

Consistency Models

- Contract between a distributed system and the applications that run on it
- A consistency model is a set of guarantees made by the distributed system

2

Linearizability

- All replicas execute operations in some total order
- That total order preserves the real-time ordering between operations
 - If operation A completes before operation B begins, then A is ordered before B in real-time
 - If neither A nor B completes before the other begins, then there is no realtime order. But there must be *some* total order.

Linearizability

== "Appears to be a Single Machine"

- Single machine processes requests one by one in the order it receives them
 - · Will receive requests ordered by real-time in that order
 - Will receive all requests in some order
- Atomic Multicast, Viewstamped Replication, Paxos, and RAFT provide Linearizability
- Single machine processing incoming requests one at a time also provide Linearizability ©

9

Linearizability is Ideal?

- Hides the complexity of the underlying distributed system from applications!
 - Easier to write applications
 - Easier to write correct applications
- But, performance trade-offs

10

Stronger vs Weaker Consistency

- Stronger consistency models
 - + Easier to write applications
 - More guarantees for the system to ensure (Results in performance tradeoffs)
- Weaker consistency models
 - Harder to write applications
 - + Fewer guarantees for the system to ensure

Strictly Stronger Consistency

- A consistency model *A* is strictly stronger than *B* if it allows a strict subset of the behaviors of B
 - · Guarantees are strictly stronger

Linearizability

- All replicas execute operations in some total order
- That total order preserves the real-time ordering between operations
 - If operation A completes before operation B begins, then A is ordered before B in real-time
 - If neither A nor B completes before the other begins, then there is no realtime order. But there must be *some* total order.

Sequential Consistency

- All replicas execute operations in some total order
- That total order preserves the process ordering between operations
 - If process P issues operation A before operation B, then A is ordered before B by the process order (i.e., preserves local ordering)
 - If operations A and B and done by different processes then there is no process order between them. But there must be *some* total order.

13

14

Sequential Consistency ≈ "Appears to be a Single Machine"

- Single machine processes requests one by one in the order it receives them
 - · Will receive requests ordered by process order in that order
 - · Will receive all requests in some order

Linearizability is strictly stronger than Sequential Consistency

Linearizability: 3 total order + real-time ordering

Sequential: 3 total order + process ordering

where Process ordering \subseteq Real-time ordering

Causal+ Consistency

- Partially orders all operations, does not totally order them
 - Does not look like a single machine
- Guarantees
 - For each process, \exists an order of all writes + that process's reads
 - Order respects the happens-before (\rightarrow) ordering of operations
 - + replicas converge to the same state
 - Skip details, makes it stronger than eventual consistency

Causal Consistency

- 1. Writes that are potentially causally related must be seen by all processes in same order.
- 2. Concurrent writes may be seen in a different order on different processes.

Concurrent: Ops not causally related

