
1

Consensus: Paxos + RAFT

COS 418: Distributed Systems
Lecture 13

Mike Freedman

RAFT slides based on those from Diego Ongaro and John Ousterhout

1

Review: Primary-Backup Replication

• Nominate one replica primary
– Clients send all requests to primary
– Primary orders clients’ requests

2

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Clients
shl

Servers

2

From Two to Many Replicas

• Primary-backup with many replicas
– Primary waits for acknowledgement from all backups
– All updates to set of replicas needs to update shared disk

3

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Clients
shl

Servers

3

What else can we do with more replicas?

• Viewstamped Replication:
– State Machine Replication for any number of replicas
– Replica group: Group of 2f + 1 replicas
• Protocol can tolerate f replica crashes

• Differences with primary-backup
– No shared disk (no reliable failure detection)
– Don’t need to wait for all replicas to reply
– Need more replicas to handle f failures (2f+1 vs f+1)

4

4

2

The Need For a View Change
• So far: Works for f failed backup replicas
• But what if the f failures include a failed primary?
– All clients’ requests go to the failed primary
– System halts despite merely f failures

• Need to agree on who the next primary should be

5

5

Consensus

Definition:

1. A general agreement about something

2. An idea or opinion that is shared by all the
people in a group

6

Consensus Used in Systems

Group of servers want to:

• Make sure all servers in group receive the same updates in
the same order as each other

• Maintain own lists (views) on who is a current member of the
group, and update lists when somebody leaves/fails

• Elect a leader in group, and inform everybody

• Ensure mutually exclusive (one process at a time only) access
to a critical resource like a file

7

7

Flavors of Paxos: Basic Paxos

• Run the full protocol each time
– e.g., for each slot in the command log

• Takes 2 rounds until a value is chosen

8

3

Phase 1
• Proposer:
– Choose proposal n, send

<prepare, n> to all acceptors

• Acceptors:
– If n > nhighest

• nhighest = n
• Reply < promise, n,

(naccepted , vaccepted) || Ø >
– Else
• Reply < prepare-failed >

9

Basic Paxos
Phase 2

• Proposer:
– If promise from majority of acceptors,
• Determine vaccepted with highest

naccepted, if exists
• Send <accept, (n, vaccepted || v)> to

all acceptors

• Acceptors:
– If n ≥ nhighest

• Accept proposal:
naccepted = nhighest = n
vaccepted = v

9

Example runs of Paxos

10

1 1

2

n

1 1

2

n

nh=1.1

nh=1.1

nh=1.1

nh=1.1

nh=1.1

nh=1.1

<promise,
1.1, Ø>

<prepare, 1.1> <accept,
(1.1,v1.1)>

10

Example runs of Paxos

11

1 1

2

n

1

<promise,
1.1, Ø>

<prepare, 1.1>

2

<prepare, 1.2>

2

<prepare-
failed>

Case: Proposer 1 fails to
get majority of promises
for 1.1, because majority
of acceptors had received
1.2 prior to 1.1

nh=1.1

nh=1.2

nh=1.2

11

Example runs of Paxos

12

1 1

2

n

1
<prepare, 1.1>

2

<prepare, 1.2>

2<promise,
1.2, Ø>

Case: Proposer 2 receives
majority of promises for
1.2, progresses to phase 2

nh=1.2

nh=1.2

nh=1.2

12

4

Example runs of Paxos

13

1 1

2

n

1
<prepare, 1.1>

2

<prepare, 1.2>

2<promise,
1.2, Ø>

Case: Proposer 2 receives
majority of promises for
1.2, progresses to phase 2

Case: Proposer 1 receives
majority of promises for
1.1, progresses to phase 2

<promise,
1.1, Ø>

nh=1.2

nh=1.2

nh=1.2

13

Example runs of Paxos

14

1 1

2

n

1
<prepare, 1.1>

2

<prepare, 1.2>

2<promise,
1.2, Ø>

1

2

n

<accept,
(1.1,v1.1)>

<promise,
1.1, Ø> Reject <accept, 1.1>,

given 1.1 < nh
nh=1.2

nh=1.2

nh=1.2

nh=1.2

nh=1.2

nh=1.2

14

Example runs of Paxos

15

1 1

2

n

1
<prepare, 1.1>

2

<prepare, 1.2>

2<promise,
1.2, Ø>

1

2

n

<accept,
(1.1,v1.1)>

<accept,
(1.2,v1.2)>

<promise,
1.1, Ø>

nh=1.2

nh=1.2

nh=1.2

nh=1.2

Proposal <1.2, v1.2 >
accepted by majority of
acceptors

Reject <accept, 1.1>,
given 1.1 < nh

nh= na= 1.2

nh= na=1.2

15

Example runs of Paxos

16

1 1

2

n

1

2 2

1

2

n

nh=1.2

nh=1.2

nh=1.2

nh=1.2

nh= na= 1.2

nh= na=1.2

3

<prepare, 1.3><prepare, 1.2>
<promise,

1.2, Ø>

Proposal 1.3 is highest,
but 1.2 accepted already
by majority

16

5

Example runs of Paxos

17

1 1

2

n

1

2 2

1

2

n

nh=1.2

nh=1.2

nh=1.2

nh=1.2

3

<prepare, 1.3>

3

<prepare, 1.2>
<promise,

1.2, Ø>
<promise,

1.3, (n1.2, v1.2)>

nh= na= 1.2

nh= na=1.2

17

Example runs of Paxos

18

1 1

2

n

1

2 2

1

2

n

nh=1.2

nh=1.2

nh=1.2

nh=1.2

3

<prepare, 1.3>

3

<prepare, 1.2>
<promise,

1.2, Ø>
<promise,

1.3, (n1.2, v1.2)>

<accept,
(1.3, v1.2)>

nh= na= 1.2

nh= na=1.2

Once v1.2 accepted,
stays accepted

18

Flavors of Paxos: Multi-Paxos
• Elect a leader and have them run 2nd phase directly
– e.g., for each slot in the command log
– Leader election uses Basic Paxos

• Takes 1 round until a value is chosen
– Faster than Basic Paxos

• Used extensively in practice!
– RAFT is similar to Multi Paxos

19

RAFT: A CONSENSUS ALGORITHM
FOR REPLICATED LOGS

Diego Ongaro and John Ousterhout

Stanford University

20

20

6

• Replicated log => replicated state machine
– All servers execute same commands in same order

• Consensus module ensures proper log replication

Goal: Replicated Log

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

Servers

Clients
shl

21

21

1. Leader election

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes

4. Neutralizing old leaders

5. Client interactions

6. Reconfiguration

Raft Overview

22

22

• At any given time, each server is either:
– Leader: handles all client interactions, log replication
– Follower: completely passive
– Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Follower Candidate Leader

Server States

23

23

• Servers start as followers
• Leaders send heartbeats (empty AppendEntries RPCs) to maintain

authority over followers
• If electionTimeout elapses with no RPCs (100-500ms), follower

assumes leader has crashed and starts new election

Follower Candidate Leader

start
timeout,

start election
receive votes from
majority of servers

timeout,
new election

discover server with
higher termdiscover current leader

or higher term

“step
down”

Liveness Validation

24

24

7

• Time divided into terms
– Election (either failed or resulted in 1 leader)
– Normal operation under a single leader

• Each server maintains current term value

• Key role of terms: identify obsolete information

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

Terms (aka epochs)

25

25

• Start election:
– Increment current term, change to candidate state, vote for self

• Send RequestVote to all other servers, retry until either:
1. Receive votes from majority of servers:
• Become leader
• Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
• Return to follower state

3. No-one wins election (election timeout elapses):
• Increment term, start new election

Elections

26

26

• Safety: allow at most one winner per term
– Each server votes only once per term (persists on disk)
– Two different candidates can’t get majorities in same term

• Liveness: some candidate eventually wins
– Each choose election timeouts randomly in [T, 2T]
– One usually initiates and wins election before others start
– Works well if T >> network RTT

Servers

Voted for
candidate A

B can’t also
get majority

Elections

27

27

• Log entry = < index, term, command >
• Log stored on stable storage (disk); survives crashes
• Entry committed if known to be stored on majority of servers
– Durable / stable, will eventually be executed by state machines

1
add

1 2 3 4 5 6 7 8
3

jmp
1

cmp
1

ret
2

mov
3

div
3

shl
3

sub

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

3
sub

1
add

1
cmp

1
add

3
jmp

1
cmp

1
ret

2
mov

3
div

3
shl

leader
log index

followers

committed entries

term

command

28

Log Structure

28

8

• Client sends command to leader
• Leader appends command to its log
• Leader sends AppendEntries RPCs to followers

• Once new entry committed:
– Leader passes command to its state machine, sends result to client
– Leader piggybacks commitment to followers in later AppendEntries
– Followers pass committed commands to their state machines 29

Normal operation

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

29

• Crashed / slow followers?
– Leader retries RPCs until they succeed

• Performance is “optimal” in common case:
– One successful RPC to any majority of servers

30

Normal operation

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

30

• If log entries on different server have same index and term:
– Store the same command
– Logs are identical in all preceding entries

• If given entry is committed, all preceding also committed

31

Log Operation: Highly Coherent

1
add

1 2 3 4 5 6
3

jmp
1

cmp
1

ret
2

mov
3

div

4
sub

1
add

3
jmp

1
cmp

1
ret

2
mov

server1

server2

31

• AppendEntries has <index,term> of entry preceding new ones

• Follower must contain matching entry; otherwise it rejects

• Implements an induction step, ensures coherency
32

Log Operation: Consistency Check

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

2
mov

leader

follower

1 2 3 4 5

1
add

3
jmp

1
cmp

1
ret

2
mov

1
add

1
cmp

1
ret

1
shl

leader

follower

AppendEntries succeeds:
matching entry

AppendEntries fails:
mismatch

32

9

• New leader’s log is truth, no special steps, start normal operation
– Will eventually make follower’s logs identical to leader’s
– Old leader may have left entries partially replicated

• Multiple crashes can leave many extraneous log entries

1 2 3 4 5 6 7log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5
33

Leader Changes

33

• Raft safety property: If leader has decided log entry is committed,
entry will be present in logs of all future leaders

• Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs
2. Only entries in leader’s log can be committed
3. Entries must be committed before applying to state machine

Committed → Present in future leaders’ logs
Restrictions on

commitment
Restrictions on
leader election

34

Safety Requirement
Once log entry applied to a state machine, no other state

machine must apply a different value for that log entry

34

• Elect candidate most likely to contain all committed entries
– In RequestVote, candidates incl. index + term of last log entry

– Voter V denies vote if its log is “more complete”:
(newer term) or (entry in higher index of same term)

– Leader will have “most complete” log among electing majority
35

Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2 Unavailable during
leader transition

Committed?
Can’t tell

which entries
committed!

s1

s2

35

• Case #1: Leader decides entry in current term is committed

• Safe: leader for term 3 must contain entry 4

36

Committing Entry from Current Term
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2 Can’t be elected as
leader for term 3

AppendEntries just succeeded

Leader for term 2

36

10

• Case #2: Leader trying to finish committing entry from earlier

• Entry 3 not safely committed:
– s5 can be elected as leader for term 5 (how?)
– If elected, it will overwrite entry 3 on s1, s2, and s3 37

Committing Entry from Earlier Term
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

AppendEntries just succeeded

Leader for term 4

3

37

• For leader to decide entry is committed:
1. Entry stored on a majority
2. ≥ 1 new entry from leader’s term also on majority

• Example; Once e4 committed, s5 cannot be elected leader for term 5,
and e3 and e4 both safe

Combination of election rules and commitment rules
makes Raft safe

38

New Commitment Rules
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

4

4

3

Leader for term 4

38

Leader changes can result in log inconsistencies
39

Challenge: Log Inconsistencies

1 41 1 4 5 5 6 6 6Leader for term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

Possible
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Missing
Entries

Extraneous
Entries

1 2 3 4 5 6 7 8 9 10 11 12

39

Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7
1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1
Followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• New leader must make follower logs consistent with its own
– Delete extraneous entries
– Fill in missing entries

• Leader keeps nextIndex for each follower:
– Index of next log entry to send to that follower
– Initialized to (1 + leader’s last index)

• If AppendEntries consistency check fails, decrement nextIndex, try again

40

11

Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7
1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1Before repair 2 2 33 3 3 32

(a)

(f)

1 1 1 4(f)

nextIndex

After repair

41

• Leader temporarily disconnected
→ other servers elect new leader

→ old leader reconnected
→ old leader attempts to commit log entries

• Terms used to detect stale leaders (and candidates)
– Every RPC contains term of sender
– Sender’s term < receiver:

• Receiver: Rejects RPC (via ACK which sender processes…)
– Receiver’s term < sender:

• Receiver reverts to follower, updates term, processes RPC

• Election updates terms of majority of servers
– Deposed server cannot commit new log entries

42

Neutralizing Old Leaders

42

• Send commands to leader
– If leader unknown, contact any server, which redirects client to leader

• Leader only responds after command logged, committed,
and executed by leader

• If request times out (e.g., leader crashes):
– Client reissues command to new leader (after possible redirect)

• Ensure exactly-once semantics even with leader failures
– E.g., Leader can execute command then crash before responding
– Client should embed unique request ID in each command
– This unique request ID included in log entry
– Before accepting request, leader checks log for entry with same id 43

Client Protocol

43

RECONFIGURATION

44

44

12

• View configuration: { leader, { members }, settings }
• Consensus must support changes to configuration:

e.g., replace failed machine, change degree of replication

• Cannot switch directly from one config to another:
conflicting majorities could arise

45

Configuration Changes

Cold Cnew

Server 1
Server 2
Server 3
Server 4
Server 5

time

Majority of Cold

Majority of Cnew

45

• Joint consensus in intermediate phase: need majority of both old and new
configurations for elections, commitment

• Configuration change just a log entry; applied immediately on receipt
(committed or not)

• Once joint consensus is committed, begin replicating log entry for final config

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

46

2-Phase Approach via Joint Consensus

46

• Any server from either configuration can serve as leader
• If leader not in Cnew, must step down once Cnew committed

timeCold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

47

2-Phase Approach via Joint Consensus

leader not in Cnew
steps down here

47

