Replication State Machines via
Primary-Backup Replication

N

COS 418: Distributed Systems
Lecture 11

Mike Freedman

From eventual to strong consistency

» Eventual consistency

— “Multi-master”: Any node can accept operation
— Asynchronously, nodes synchronize state

» Eventual consistency inappropriate for many applications
— Imagine bank ledger as eventually consistent

» Stronger consistency makes applications easier to write
— (More on downsides later)

Primary-Backup Replication

Client C % * Mechanism: Replicate and separate
l servers

. > » Goal #1: Provide a highly reliable
PimaryP \U service (despite failures)

» Goal #2: Servers should behave just
Backup B W like a single, more reliable server

Primary-Backup Replication

Client C % + Nominate one replica primary, other backup
l — Clients send all ops to current primary

Primary P \U — Primary orders clients’ operations

,l + Only one primary at a time
Backup B k‘U

Need to keep clients, primary, and backup in
sync: who is primary and who is backup

More reading: ACM Computing Surveys, Vol. 22, No. 4, December 1990 (pdf).

State machine replication

Implementing Fault-Tolerant Services Using the State Machine

+ ldea: A replica is essentially a stafe machine Approach: A Tutorial
. . FRED B. SCHNEIDER
— Set of (key, value) pairs is state vt o omgder Sene G o e e Yok 423

— Operations transition between states

'y components and integrating repaired compon

* Need an op to be executed on all replicas, or none at all
. [Operating Syste
—i.e., we need distributed all-or-nothing atomicity oo T Al
— If op is deterministic, replicas will end in same state

approach

INTRODUCTION service by replicating servers and coordi-
nating client interactions with server rep-

Distributed software is oft g cli
terms of clients and services. Each service (o5 ok o dmarding ng. deesgoe
I . P comprises one or more servers and exports | . -
+ Key assumption: Operations are detemministic operations that clients mvoke by making 8 Feblication management protocols,
e Alaagh oy Yol somian Many protocols that involve replication of
el sorver is the Simmieat way 1o imaje. dataor software—be it for masking failures
mont a sorvies, the resulting service an OF SImPLY to facilitate cooperation without
y vice N centralized control—can be derived usin,
only be as fault tolerant as the processor 2R EET AR approach. Although fer ‘5
S executing that server. If this level of fault ¢y oge protocols actually were obtained in 6

Primary-Backup Replication Primary-Backup Replication

; . . ; Asynchronous Replication
Client C % 1. Primary gets operations Client C y P

put(x,1)l put(x,ﬂ” ack 1. Primary gets operations
Primary P A‘D

put(XJ)l
Backup exec’s ops or writes to

Backup B @ log Backup B ‘U 4. Replicates log of ops to backup

5. Backup exec’s ops or writes to
log

Primary orders ops into log

Primary P w 2. Primary exec'’s ops, acks client
Replicates log of ops to backup i} . .
put(x,”l 3. Primary orders ops into log

R ® DN

https://www.cs.cornell.edu/fbs/publications/SMSurvey.pdf

Primary-Backup Replication
Client C Synchronous Replication

put(x,1) . Primary gets operations

. Primary orders ops into log

. Replicates log of ops to backup

lT
e ”

Backup B “U

< R R

Primary gets ack from replica,
execs ops, acks to client

. Backup exec’s op or writes to log

Why does this work? Synchronous Replication

CEEEEE iﬁ‘\ it

Backup Backup Primary

* Replicated log => replicated state machine
— All servers execute same commands in same order

Why does this work? Synchronous Replication

CEEEEEE Gients

e d

Backup Primary

* Replicated log => replicated state machine
— All servers execute same commands in same order

10

Need determinism? Make it so!

* Operations are deterministic
— No events with ordering based on local clock
» Convert timer, network, user into logged events

— Nothing using random inputs

« Execution order of ops is identical

— Most RSMs are single threaded

11

12

Example: Make random() deterministic Example: Make random() deterministic

Almost all module functions depend on the basic function randem(), which generates a ° Prlmary'

random float uniformly in the semi-open range [0.0, 1.0). Python uses the Mersenne — Initiates PRNG with OS-supplied randomness, gets initial seed
Twister as the core generator. It produces 53-bit precision floats and has a period of

2**19937-1. The underlying implementation in C is both fast and threadsafe. The — Sends initial seed to to backup

Mersenne Twister is one of the most extensively tested random number generators in

existence. However, being completely deterministic, it is not suitable for all purposes, and * Backup

is completely unsuitable for cryptographic purposes.

— Initiates PRNG with seed from primary

randon. seed (a=None) randon. seed (a=None)
Initialize internal state of the random number generator. Initialize internal state of the random number generator.
None OF NO argument seeds from current time or from an operating system specific None OF NO argument seeds from current time or from an operating system specific
randomness source if available (see the os.urandom() function for details on randomness source if available (see the os.urandom() function for details on
availability). availability).

random. getstate() random. getstate()
Return an object capturing the current internal state of the generator. This object can Return an object capturing the current internal state of the generator. This object can
be passed to setstate() to restore the state. be passed to setstate() to restore the state.

VMware vSphere Fault Tolerance (VM-FT)
Case study

Goals:

The design of a practical system for
fault-tolerant virtual machines

1. Replication of the whole virtual machine
2. Completely transparent to apps and clients
D. Scales, M. Nelson, G. Venkitachalam, VMWare 3. High availability for any existing software

SIGOPS QOperating Systems Review 44(4), Dec. 2010 (

16

http://dl.acm.org/ft_gateway.cfm?id=1899932

vSphere Overview

 Two virtual machines (primary,
backup) on different bare metal

* Logging channel runs over network

 Shared disk via fiber channel

Primary Backup

Loggln
chann

@m:
L @I

/

Shared Dusk

iy

17

Overview

* Primary sends inputs to backup

* Backup outputs dropped

* Primary-backup heartbeats
— If primary fails, backup takes over

Primar: Backu,
VM Y VI A

or-

JO

Q

JQ

lia
.ﬂg m]

~

Shared Disk

f

19

Virtual Machine I/0

* VM inputs
— Incoming network packets
— Disk reads
— Keyboard and mouse events
— Clock timer interrupt events

* VM outputs

— Outgoing network packets
— Disk writes

18

VM-FT: Challenges
1. Making the backup an exact replica of primary
2. Making the system behave like a single server
3. Avoiding two primaries (Split Brain)

20

20

Log-based VM replication
+ Step 1: Hypervisor at primary logs causes of non-determinism

1. Log results of input events
* Including current program counter value for each

2. Log results of non-deterministic instructions
* e.g. log result of timestamp counter read

21

Log-based VM replication

+ Step 2: Primary hypervisor sends log entries to backup

+ Backup hypervisor replays the log entries

— Stops backup VM at next input event or non-deterministic
instruction

* Delivers same input as primary
* Delivers same non-deterministic instruction result as primary

22

21

VM-FT Challenges

1. Making the backup an exact replica of primary

2. Making the system behave like a single server
—FT Protocol

3. Avoiding two primaries (Split Brain)

23

23

22

Primary to backup failover

* When backup takes over, non-determinism makes it
execute differently than primary would have

—This is okay!

 Output requirement

—When backup takes over, execution is consistent with
outputs the primary has already sent

24

24

The problem of inconsistency

Input
\\

Primary

Backup T
Primary fails

25

25

VM-FT protocol

* Primary logs each output operation
+ Delays sending output until Backup acknowledges it

+ But does not need to delay execution
Input \8 o\
p ~ 0\)\9\) A ?‘-\«\3

N,

Primary

Backup

26

VM-FT protocol

* Primary logs each output operation
* Delays sending output until Backup acknowledges it

» But does not need to delay execution

NS
Input ot o

P ~ O\)\Q /1 ° "\“\aﬂ

N\,

Primary

Backup

Restart execution at last output event

27

26

27

VM-FT Backup Promotion Process #1

* Backup switches from backup mode to primary mode at
the last output event in the log

» Should it resend the last output event (packet)?
— Not sending same as the network dropping it
 Okay to not send
— Resending same as sending a duplicate packet, which TCP does
» Okay to send
— Paper doesn’t specify
* (My take: resend TCP packets, don’t resend UDP packets)

28

28

VM-FT: Challenges

1. Making the backup an exact replica of primary
2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)
— Logging channel may break

29

29

Backup Promotion Additional Work

» Advertise same MAC address as primary was using

* Reissue any pending operations to the disk
— Additional work to ensure they are idempotent

» Startup a new backup

+ If the primary detects the backup failed

— It starts a new backup

31

Detecting and responding to failures

* Primary and backup each run UDP heartbeats, monitor
logging traffic from their peer

« Before “going live” execute atomic test-and-set on
variable in shared storage

« If the replica finds variable already set, it aborts (and halts)

30

30

31

Primary-Backup Replication

» State-machine replication: same input, deterministic
processing => identical replicas

* VM-FT: we can do this with whole machines!
— Determinism tricky, but doable
— Primary delays output until acked by backup
— Use atomic test-and-set on shared disk to avoid split brain

32

32

33

33

