
1

Scaling Out Key-Value Storage
and Dynamo

COS 418: Distributed Systems
Lecture 10

Mike Freedman

1

• Web applications are expected to be “always on”
– Down time à pisses off customers, costs $

• System design considerations relevant to availability
– Scalability: always on under growing demand
– Reliability: always on despite failures
– Performance: 10 sec latency considered available?

• “an availability event can be modeled as a long-lasting performance
variation” (Amazon Aurora SIGMOD ’17)

Availability: vital for web applications

2

2

• Scale-up (vertical scaling)
– Upgrade hardware
– E.g., Macbook Air à Macbook Pro
– Down time during upgrade; stops working quickly

• Scale-out (horizontal scaling)
– Add machines, divide the work
– E.g., a supermarket adds more checkout lines
– No disruption; works great with careful design

Scalability: up or out?

3

3

• More machines, more likely to fail
– p = probability one machine fails; n = # of machines
– Failures happen with a probability of 1−(1−p)n

• For 50K machines, each with 99.99966% available
– 16% of the time, data center experiences failures

• For 100K machines, failures happen 30% of the time!

Reliability: available under failures

4

4

2

• How is data partitioned across machines so the system scales?

• How are failures handled so the system is always on?

Two questions (challenges)

5

5

1. Background and system model

2. Data partitioning

3. Failure handling

6

Today: Amazon Dynamo

6

• 104s of servers in multiple datacenters
– 106s of servers, 80+ DCs (as of now)

• 107s of customers at peak times
– 20M+ purchases in US. (Prime Day 2020)

• Tiered architecture (similar today)
– Stateless web servers & aggregators
– Stateful storage servers

Amazon in 2007

7

7

• A key-value store (vs. relational DB)
– get(key) and put(key, value)
– Nodes are symmetric
– Remember DHT?

• Service-Level Agreement (SLA)
– E.g., “provide a response within 300ms for 99.9% of its

requests for peak client load of 500 requests/sec”

8

Basics in Dynamo

8

3

2. Data partitioning
– Incremental scalability
– Load balancing

9

Today: Amazon Dynamo

9
10

Consistent hashing recap

Key is stored at its successor: node with next-higher ID

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers have m = 3 bits
Key space: [0, 23-1]

Node

Stores key 1

Stores keys 2, 3 Stores keys 4, 5

Stores key 6

Stores key 7, 0

Identifiers/key space

10

• Minimum data is moved around when nodes join and leave

• Please try modular hashing and see the difference

11

Incremental scalability (why consistent hashing)

3-bit
ID space

0
1

2

3
4

5

6

7

Keys 1 ~ 3

keys 4 ~ 0

Node 5 joins

0
1

2

3
4

5

6

7

Keys 1 ~ 3

keys 6 ~ 0

Transfer
Keys 4, 5

Keys 4, 5

11

• Nodes are assigned different # of keys

12

Challenge: unbalanced load

3-bit
ID space

0
1

2

3
4

5

6

7

keys 4 ~ 0

Keys 1 ~ 3

12

4

• Nodes are assigned different # of keys

• Unbalanced with nodes join/leave

13

Challenge: unbalanced load

3-bit
ID space

0
1

2

3
4

5

6

7

keys 7, 0

Keys 3, 4

keys 1, 2 keys 5, 6

13

• Nodes are assigned different # of keys

• Unbalanced with nodes join/leave

14

Challenge: unbalanced load

3-bit
ID space

0
1

2

3
4

5

6

7

keys 5, 6, 7, 0

Keys 3, 4

keys 1, 2 keys 5, 6

14

• Nodes are assigned different # of keys

• Unbalanced with nodes join/leave

• Some keys are more popular

15

Challenge: unbalanced load

3-bit
ID space

0
1

2

3
4

5

6

7

keys 7, 0

Keys 3, 4

Best seller item

Keys 1, 2 Keys 5, 6

15

• An extra level of mapping
– From node id in the ring to physical node
– Node ids are now virtual nodes (tokens)
– Multiple node ids à same physical node

16

Solution: virtual nodes

3-bit
ID space

0
1

2

3
4

5

6

7

16

5

• An extra level of mapping
– From node id in the ring to physical node
– Node ids are now virtual nodes (tokens)
– Multiple node ids à same physical node

17

Solution: virtual nodes

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers/key space
Virtual node:
same color à same physical node

4 phyiscal nodes (servers)
2 vnodes / server

17

• An extra level of mapping
– From node id in the ring to physical node
– Node ids are now virtual nodes (tokens)
– Multiple node ids à same physical node

18

Solution: virtual nodes

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers/key space
Virtual node:
same color à same physical node

Gold server leaves
Keys moved to blue and red

18

• An extra level of mapping
– From node id in the ring to physical node
– Node ids are now virtual nodes (tokens)
– Multiple node ids à same physical node

• More virtual nodes, more balanced

• Faster data transfer for join/leave

• Controllable # of vnodes / server
– Server capacity, e.g., CPU, memory, network.

19

Solution: virtual nodes (vnodes)
Identifiers/key space
Virtual node:
same color à same physical node

3-bit
ID space

0
1

2

3
4

5

6

7

19

3. Failure handling
– Data replication

20

Today: Amazon Dynamo

20

6

• Key replicated on M vnodes
– Remember “r-successor” in DHT?

• All M vnodes on distinct servers across
different datacenters

21

Preference list (data replication)

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers/key space
Virtual node:
5 colors à 5 physical nodes

21

• Key replicated on M vnodes
– Remember “r-successor” in DHT?

• All M vnodes on distinct servers across
different datacenters

22

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers/key space
Virtual node:
5 colors à 5 physical nodes

M = 4
Key 0’s Preference list could be

vnodes: {0, 1, 3, 5} mapping to servers:
{green, red, gold, blue}

Green is the coordinator server of key 0

Key 0

Key 0

Key 0Key 0

Preference list (data replication)

22

• Received by the coordinator
– Either the client (web server) knows the mapping or re-routed. (This is not Chord)

• Sent to the first N “healthy” servers in the preference list (coordinator included)
– Durable writes: my updates recorded on multiple servers
– Fast reads: possible to avoid straggler

• A write creates a new immutable version of the key instead of overwriting it
– Multi-versioned data store

• Quorum-based protocol: W + R > N
– A write succeeds if W out of N servers reply (write quorum)
– A read succeeds if R out of N servers reply (read quorum)

23

Read and write requests

23

• N determines the durability of data (Dynamo N = 3)

• W and R plays around with the availability-consistency tradeoff
– W = 1 (R = 3): fast write, weak durability, slow read (read availability)
– R = 1 (W = 3): slow write (write availability), good durability, fast read
– Dynamo: W = R = 2

• Why W + R > N ?
– Read and write quorums overlap when there are no failures!
– Reads see all updates without failures

• What if there are failures?
24

Quorum implications (W, R, and N)

24

7

• Sloppy: not always the same servers used in N
– First N servers in the preference list without failures
– Later servers in the list take over if some in the first N fail

• Consequences
– Good performance: no need to wait for failed servers in N to recover
– Eventual (weak) consistency: conflicts are possible, versions diverge
– Another decision on availability-consistency tradeoff!

25

Failure handing: sloppy quorum + hinted handoff

25
26

Failure handing: sloppy quorum + hinted handoff

3-bit
ID space

0
1

2

3
4

5

6

7

Identifiers/key space
Virtual node:
5 colors à 5 physical nodes

Key 0

Key 0

Key 0Key 0

• Key 0’s preference list {green, red, gold, blue}

• N = 3: {green, red, gold} without failures

• If red fails, requests go to {green, gold, blue}

• Hinted handoff
– Blue temporarily serves requests
– Hinted that red is the intended recipient
– Send replica back to red when red is on

26

27

An example of conflicting writes (versions)

A B C D E
Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

A and B fail

Time

27
28

An example of conflicting writes (versions)

A B C D E
Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

A and B fail

CL2: Add Item y y y

Time

28

8

29

An example of conflicting writes (versions)

A B C D E
Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

A and B fail

CL2: Add Item y y y

A and B recover

CL1: Read cart read read
Time

Conflicting versions
only possible under failures

29
30

Vector clocks: handling conflicting versions

A B C D E
Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

A and B fail

CL2: Add Item y y y

A and B recover

CL1: Read cart read read
Time

A.1 A.1

C.1 C.1
Read returns x(A.1) and y(C.1)

A.1 and C.1 are not causally related:
conflicts!

Can we use Lamport clocks?

30

• If vector clocks show causally related (not really conflicting)
– System overwrites with the later version

• For conflicting versions
– System handles it automatically, e.g., last-writer-wins, limited use case
– Application specific resolution (most common)

• Clients resolve the conflict via reads, e.g., merge shopping cart

31

Conflict resolution (reconciliation)

31
32

Vector clocks: handling conflicting versions

A B C D E
Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

CL2: Add Item y y y

CL1: Read cart
x(A.1), y(C.1)

Time

A.1 A.1

C.1 C.1

32

9

33

Vector clocks: handling conflicting versions

A B C D E
Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

CL2: Add Item y y y

CL1: Read cart
x(A.1), y(C.1)

Time

A.1 A.1

C.1 C.1

CL1: Add Item z
x, y, z (A.1, C.1)

33
34

Vector clocks: handling conflicting versions

A B C D E
Preference list (M = 5, N = 3)

Shopping cart:

x xCL1: Add Item x

CL2: Add Item y y y

CL1: Read cart
x(A.1), y(C.1)

Time

A.1 A.1

C.1 C.1

CL1: Add Item z
x, y, z (A.1, C.1)

xyz xyz
(A.2, C.1)(A.2, C.1)

34

• Each server keeps one Merkle tree per virtual node (a range of keys)
– A leaf is the hash of a key’s value: # of leaves = # keys on the virtual node

– An internal node is the hash of its children

• Replicas exchange trees from top down, depth by depth
– If root nodes match, then identical replicas, stop
– Else, go to next level, compare nodes pair-wise

35

Anti-entropy (replica synchronization)

35

• Server A considers B has failed if B does not reply to A’s message
– Even if B replies to C

– A then tries alternative nodes
– With servers join and permanently leave

• Servers periodically send gossip messages to their neighbors to sync
who are in the ring
– Some servers are chosen as seeds, i.e., common neighbors to all nodes

36

Failure detection and ring membership

36

10

• Availability is important
– Systems need to be scalable and reliable

• Dynamo is eventually consistent
– Many design decisions trade consistency for availability

• Core techniques
– Consistent hashing: data partitioning
– Preference list, sloppy quorum, hinted handoff: handling transient failures
– Vector clocks: conflict resolution

– Anti-entropy: synchronize replicas
– Gossip: synchronize ring membership 37

Conclusion

37

