
COS 217: Introduction to Programming Systems

Buffer Overrun Vulnerabilities and
Assignment 6 (The ‘B’ Attack)

@fridooh
xkcd.com/2385

https://unsplash.com/@fridooh

A Program

$./a.out
What is your name?
Aarti Gupta
Thank you, Aarti Gupta.
The answer to life, the universe, and everything is 42

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

@grakozy
2

https://unsplash.com/@grakozy

A Reason Why People With Long Names Can’t Have Nice Things

$./a.out
What is your name?
Christopher Moretti
Thank you, Christopher Mor
tti.
The answer to life, the universe, and everything is 6911092

?
??? (!)
(depending on the area code, this might be an
interesting phone number, but probably not one
you should call for the answer to
life, the universe, and everything)

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

3

Explanation: Stack Frame Layout

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

When there are too many characters,
program carelessly writes beyond
space “belonging” to name.

• Overwrites other variables
• This is a buffer overrun, or stack smash
• The program has a security bug!

5

Example Trace
#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Christophers (not \0 terminated) in name[0]-name[11]

Each letter from getchar overwrites c (it is also
overwritten once by name[i++] = c, when i is 15 and c is
‘e’) until c becomes ‘\n’ and the loop ends.
First t overwrites 42 with 0x74 (‘t’) – little endian!
Second t makes magic 29812 (2 high-order bytes still 0)
Final i makes magic 6911092 (1 high-order byte still 0)

Mor in 3 padding bytes before c

6

It Gets Worse…

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Buffer overrun can overwrite return
address of a previous stack frame!

Return addr

7

It Gets Worse…

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Buffer overrun can overwrite return
address of a previous stack frame!

• Value can be an invalid address,
leading to a segfault, or …

0x0042

8

It Gets Much Worse…

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Buffer overrun can overwrite return
address of a previous stack frame!

• Value can be an invalid address,
leading to a segfault, or it can cleverly
cause unintended control flow!

here
.text

9

It Gets Much, Much Worse…

#include <stdio.h>
int main(void)
{

char name[12], c;
int i = 0, magic = 42;
printf("What is your name?\n");
while ((c = getchar()) != '\n')

name[i++] = c;
name[i] = '\0';
printf("Thank you, %s.\n", name);
printf("The answer to life, the universe, "

"and everything is %d\n", magic);
return 0;

}

Old SP

0

magic
c

Return addr
name

.

.

.

i

SP

Buffer overrun can overwrite return
address of a previous stack frame!

• Value can be an invalid address,
leading to a segfault, or it can cleverly
cause unintended control flow, or even
cause arbitrary malicious code to execute!

or here...
.bss

here
.text

10

Attacking a Web Server

Web Server
Client PC

for(i=0;p[i];i++)
search[i]=p[i];

URLs

Input in web forms

Crypto keys for SSL

etc.

this is a really long search term that overflows a buffer

Attacking a Web Browser

Web Server
@ badguy.com

Client PC

for(i=0;p[i];i++)
img[i]=p[i];

HTML keywords

Images

Image names

URLs

etc.
www.badguy.com

Earn $$$ Thousands
working at home!

Attacking Everything in Sight

The Internet
@ badguy.com

Client PC

for(i=0;p[i];i++)
important[i]=p[i];

E-mail client

PDF viewer

Operating-system kernel

TCP/IP stack

Any application that ever sees input directly from the outside

Defenses Against This Attack

Best: program in languages that make
array-out-of-bounds impossible (Java, python, C#, ML, ...)

But if you need to use C…

Defenses Against This Attack
In C: use discipline and software analysis tools to check bounds of array subscripts

Augmented by OS- or compiler-level mitigations:

• Randomize initial stack pointer

• “No-execute” memory permission for sections other than .text

• “Canaries” at end of stack frames
15

None of these
would have
prevented the
“Heartbleed”
attack

Assignment 6: Attack the “Grader” Program

$./grader
What is your name?
Aarti
D is your grade.
Thank you, Aarti.
$./grader
What is your name?
Andrew Appel
B is your grade.
Thank you, Andrew Appel.

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{

mprotect(...);
getname();
if (strcmp(name, "Andrew Appel") == 0)

grade = 'B';
printf("%c is your grade.\n", grade);
printf("Thank you, %s.\n", name);
return 0;

}
16

Assignment 6: Attack the “Grader” Program

/* Read a string into name */
void readString() {
char buf[BUFSIZE];
int i = 0;
int c;

/* Read string into buf[] */
for (;;) {
c = fgetc(stdin);
if (c == EOF || c == '\n')
break;

buf[i] = c;
i++;

}
buf[i] = '\0';

/* Copy buf[] to name[] */
for (i = 0; i < BUFSIZE; i++)
name[i] = buf[i];

}

/* Prompt for name and read it */
void getName() {
printf("What is your name?\n");
readString();

}

Unchecked
write to
buffer!

17

Assignment 6: Attack the “Grader” Program

$./grader
What is your name?
Aarti\0(#@&$%*#&(*^!@%*!!(&#$
B is your grade.
Thank you, Aarti.

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{

mprotect(...);
getname();
if (strcmp(name, "Andrew Appel") == 0)

grade = 'B';
printf("%c is your grade.\n", grade);
printf("Thank you, %s.\n", name);
return 0;

}
18

Smash the
stack!

Memory Map of STACK Section

SP
readString’s
stackframe

???
buf
buf
…
buf
???

getName’s
stackframe ???

…
???

main’s
stackframe ???

…
???

Keep writing past end of buf

Get to getName’s stackframe

getName’s saved x30!
(somewhere on stack)

Overwrite it!

What’s
there?

With
what?

19

Assignment 6: Attack the “Grader” Program

$./grader
What is your name?
Aarti\0(#@&$%*#&(*^!@%*!!(&#$
B is your grade.
Thank you, Aarti.

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{

mprotect(...);
getname();
if (strcmp(name, "Andrew Appel") == 0)

grade = 'B';
printf("%c is your grade.\n", grade);
printf("Thank you, %s.\n", name);
return 0;

}
20

enum {BUFSIZE = 48};
char grade = 'D';
char name[BUFSIZE];
...
int main(void)
{

mprotect(...);
getname();
if (strcmp(name, "Andrew Appel") == 0)

grade = 'B';
printf("%c is your grade.\n", grade);
printf("Thank you, %s.\n", name);
return 0;

}

Memory Map of TEXT Section

readString
rS prolog
rS instrs…
rS instrs…
…
rS epilog
rS return

getName
gN prolog
rS instrs…
rS instrs…
…
rS epilog
rS return

main
m prolog
m instrs…
m instrs…
…
m epilog
m return

...
checkappel:

if (strcmp(name, "Andrew Appel") != 0)
goto afterb

grade = ‘B’
afterb:

print ...
...

...
checkappel:

if (strcmp(name, "Andrew Appel") != 0)
goto afterb

grade = ’B’ ß HERE!
afterb:

print ...
...

21

Construct Your Exploit String (createdataB.c)
1. Your name.

• After all, the grader program’s last
line of output must be:
“Thank you, [your name].”

2. A null byte.
• Otherwise, the grader program’s

last line of output will be corrupted.

3. Filler to overrun until x30.
• Presumably more null bytes are

easiest, but easter eggs are fine.

4. The address of the target
• The statement grade = ’B’.

22

fopen the file "dataB" and
write your name into that file
(e.g. with fprintf)

Address is a 64-bit (little-endian)
unsigned integer (which in C is
spelled unsigned long).

See “Writing Binary Data”
precept handout. '\0' is just
a single byte of binary data.

Let’s Not Get Thrown in Jail, Please

23

Summary
• This lecture:
• Buffer overrun attacks in general
• Assignment 6 “B Attack” principles of operation

• This week’s precept:
• Assignment 6 “B Attack” recap
• Memory map using gdb
• Writing binary data

• Final 2 lectures:
• Assignment 6 “A Attack” overview
• Machine language details needed for “A Attack”
• Finally finishing the 4-stage build process: the Linker!

• Final precept next week:
• MiniAssembler and ”A Attack” details24

