
COS 217: Introduction to Programming Systems

Pointers, Arrays, and Strings

POINTERS

2

Pointers in C
So… what’s a pointer?

• A pointer is a variable

• Its value is the location of another variable

• “Dereference” or “follow” the pointer to read/write
the value at that location

Why is that a good idea?

• Copying large data structures is inefficient; copying pointers is fast

• x=y is a one-time copy: if y changes, x doesn’t “update”

• Parameters to functions are copied; but handy to be able to modify value

• Often need a handle to access dynamically allocated memory3

@rbw500

https://unsplash.com/@rbw500

Straight to the Point
Pointer types are target dependent

• Example: “int *p;” – declares p to be a pointer to an int
• We’ll see “generic” pointers later

Values are memory addresses
• … so size is architecture-dependent – 8 bytes on ARMv8
• NULL macro in stddef.h for special pointer guaranteed not to point to any variable

Pointer-specific operators
• Address-of operator (&) – creates a pointer
• Dereference operator (*) – follows a pointer

Other pointer operators
• Assignment operator: =
• Relational operators: ==, !=, >, <=, etc.
• Arithmetic operators: +, –, ++, –=, !, etc.4

To Illustrate the Point…
int life = 42;

int jackie = 42;

int *adams = &life;

int *bkn = &jackie;

int **meta = &adams;

printf("%d %d\n",
adams == bkn,
*adams == *bkn);

printf(”%d %d %d %d %d\n",
meta == &adams,
meta == &bkn,
*meta == adams,
*meta == bkn,
**meta == *bkn);5

jackie

bkn

42

k

k+4

k+8

adams

meta

k+4

k+8

k+16

k+24

life 42 k

0 1

1 0 1 0 1

6

What Points to What?

jackie

bkn

42

k

k+4

k+8

adams

meta

k+4

k+8

k+16

k+24

life 42 k

A: 0 0
B: 0 1
C: 1 0
D: 1 1

adams = bkn;

printf("%d %d\n",
adams == bkn,
*adams == *bkn);

What Points to What?

adams = bkn;

printf("%d %d\n",
adams == bkn,
*adams == *bkn);

printf(”%d %d %d %d %d\n",
meta == &adams,
meta == &bkn,
*meta == adams,
*meta == bkn,
**meta == *bkn);7

jackie

bkn

42

k

k+4

k+8

adams

meta

k+4

k+8

k+16

k+24

life 42 k

1 1

1 0 1 1 1

k+4 -

Pointer Declaration Gotcha
Pointer declarations can be written as follows: int* p;

This is equivalent to: int *p;

but the former seemingly emphasizes that the type of p is (int *).

Even though this syntax seems more natural, and you are welcome to use it,
it isn’t how the designers of C thought about pointer declarations.

So beware! This declaration: int* p1, p2;

really means: int *p1; int p2;

To declare both p1 and p2 as pointers, need: int* p1; int* p2;

Or, the following works: int *p1, *p2;8

ARRAYS

9

@zburival

https://unsplash.com/@zburival

Refresher: Java Arrays
• Always dynamically allocated
• Even when the values are known at

compile time (e.g. initializer lists)

• Access via a reference variable

public static void arrays() {
int[] arr1 = {1, 2, 3};
int[] arr2 = new int[3];
for(int c = 0;

c < arr2.length; c++)
arr2[c] = 4*c;

int[] arr3 = arr1;

}

10
1 2 3

3length
0 4 8

3length
arr1

arr2

arr3

dynamically allocated
variables

local variables

C Arrays
• Can be statically allocated

as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 4*c;
int[] arr3 = arr1;

}

11

arr1[0]

arr2[0]

1
2
3
0
4
8

arr1[1]
arr1[2]

arr2[1]
arr2[2]

C Arrays
• Can be statically allocated

as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 4*c;
int[] arr3 = arr1;

}

12

arr1[0]

arr2[0]

1
2
3
0
4
8

arr1[1]
arr1[2]

arr2[1]
arr2[2]

C Arrays
• Can be statically allocated

as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 4*c;
int[] arr3 = arr1;

}

13

arr1[0]

arr2[0]

1
2
3
0
4
8

arr1[1]
arr1[2]

arr2[1]
arr2[2]

C Arrays
• Can be statically allocated

as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 4*c;
int[] arr3 = arr1;

}

14

arr1[0]

arr2[0]

1
2
3
0
4
8

arr1[1]
arr1[2]

arr2[1]
arr2[2]

C Arrays
• Can be statically allocated

as local variables
• Length must be known at compile time

• Can also be dynamically allocated
• We won’t see this until Lecture 8

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 4*c;
int[] arr3 = arr1;

}

15

arr1[0]

arr2[0]

1
2
3
0
4
8

arr1[1]
arr1[2]

arr2[1]
arr2[2]

Pointer/Array Interplay
• Array name alone can be

used as a pointer: arr vs. &arr[0]

16

int *arr3 = arr1;
/* or */

int *arr3 = &arr1[0];

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 4*c;
int[] arr3 = arr1;

}

Pointer/Array Interplay
• Array name alone can be

used as a pointer: arr vs. &arr[0]

• Subscript notation can be used
with pointers

17

int *arr3 = arr1;
int i = arr3[1];

void arrays() {
int c;
int arr1[] = {1, 2, 3};
int arr2[3];
int arr2len =

sizeof(arr2)/sizeof(int);
for (c = 0; c < arr2len; c++)

arr2[c] = 4*c;
int[] arr3 = arr1;

}

Pointer Arithmetic
Array indexing is actually a pointer operation!

arr[k] is syntactic sugar for *(arr + k)

Implies that pointer arithmetic is on elements, not bytes:

ptr ± k is implicitly
ptr ± (k * sizeof(*ptr)) bytes

Subtracting two pointers gives you a count of elements, not bytes:

(ptr + k) – ptr == k

18

Arrays with Functions
Passing an array to a function
• Arrays “decay” to pointers

(the function parameter gets the
address of the array)

• Array length in signature is ignored
• sizeof “doesn’t work”

Returning an array from a function
• C doesn’t permit functions to have

arrays for return types
• Can return a pointer instead
• Be careful not to return an

address of a local variable
(since it will be deallocated!)

/* equivalent function signatures */
size_t count(int numbers[]);
size_t count(int *numbers);
size_t count(int numbers[5]);
{

/* always returns 8 */
return sizeof(numbers);

}

int[] getArr();
int *getArr();

19

STRINGS

20

Strings and String Literals in C
A string in C is a sequence of contiguous chars

• Terminated with null char ('\0') – not to be confused with the NULL pointer
• Double-quote syntax (e.g., "hello") to represent a string literal
• String literals can be used as special-case initializer lists
• No other language features for handling strings

• Delegate string handling to standard library functions

Examples
• 'a' is a char literal
• "abcd" is a string literal
• "a" is a string literal

21

How many
bytes?

Lemon Gelatin Dessert
char string[10] =
{'H','e','l','l','o',0};

(or, equivalently)
char string[10] = "Hello";

char *pc = string+1;

printf(”Y%s ", &string[1]);
printf("J%s!", pc);

22

string[0]

string[9]

‘h’

‘e’

‘l’
‘l’

‘o’

’\0’

Standard String Library
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include <stdlib.h>
enum { LENGTH = 14 };
int main() {
char h[] = "Hello, ";
char w[] = "world!";
char msg[LENGTH];
char *found;
if(sizeof(msg) <= strlen(h) + strlen(w))
return EXIT_FAILURE;

strcpy(msg, h);
strcat(msg, w);
if(strcmp(msg ,

"Hello, world!"))
return EXIT_FAILURE;

found = strstr(msg, ", ");
if(found – msg != 5)
return EXIT_FAILURE;

return EXIT_SUCCESS;
}

23

strlen(h) + strlen(w)

strcpy(msg, h);
strcat(msg, w);

strcmp(msg)

strstr(msg, ", ");

24

DIY (x2) – Available Later This Week

