
C6 A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487C.a Copyright © 2013-2017 ARM Limited or its affiliates. All rights reserved. C6-533
ID121917 Non-Confidential

C6.2.5 ADD (shifted register)

Add (shifted register) adds a register value and an optionally-shifted register value, and writes the result to the
destination register.

32-bit variant

Applies when sf == 0.

ADD <Wd>, <Wn>, <Wm>{, <shift> #<amount>}

64-bit variant

Applies when sf == 1.

ADD <Xd>, <Xn>, <Xm>{, <shift> #<amount>}

Decode for all variants of this encoding

 integer d = UInt(Rd);
 integer n = UInt(Rn);
 integer m = UInt(Rm);
integer datasize = if sf == '1' then 64 else 32;

 if shift == '11' then ReservedValue();
 if sf == '0' && imm6<5> == '1' then ReservedValue();

 ShiftType shift_type = DecodeShift(shift);
 integer shift_amount = UInt(imm6);

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Wn> Is the 32-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Wm> Is the 32-bit name of the second general-purpose source register, encoded in the "Rm" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xn> Is the 64-bit name of the first general-purpose source register, encoded in the "Rn" field.

<Xm> Is the 64-bit name of the second general-purpose source register, encoded in the "Rm" field.

<shift> Is the optional shift type to be applied to the second source operand, defaulting to LSL and encoded
in the "shift" field. It can have the following values:

LSL when shift = 00

LSR when shift = 01

ASR when shift = 10

The encoding shift = 11 is reserved.

<amount> For the 32-bit variant: is the shift amount, in the range 0 to 31, defaulting to 0 and encoded in the
"imm6" field.

For the 64-bit variant: is the shift amount, in the range 0 to 63, defaulting to 0 and encoded in the
"imm6" field.

sf 0 0 0 1 0 1 1 shift 0 Rm imm6 Rn Rd
31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0

op S

1

C6 A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

C6-534 Copyright © 2013-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487C.a
Non-Confidential ID121917

Operation

 bits(datasize) result;
 bits(datasize) operand1 = X[n];
 bits(datasize) operand2 = ShiftReg(m, shift_type, shift_amount);

 (result, -) = AddWithCarry(operand1, operand2, '0');

 X[d] = result;

2

C6 A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487C.a Copyright © 2013-2017 ARM Limited or its affiliates. All rights reserved. C6-561
ID121917 Non-Confidential

C6.2.23 B.cond

Branch conditionally to a label at a PC-relative offset, with a hint that this is not a subroutine call or return.

19-bit signed PC-relative branch offset variant

B.<cond> <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm19:'00', 64);

Assembler symbols

<cond> Is one of the standard conditions, encoded in the "cond" field in the standard way.

<label> Is the program label to be conditionally branched to. Its offset from the address of this instruction,
in the range +/-1MB, is encoded as "imm19" times 4.

Operation

 if ConditionHolds(cond) then
 BranchTo(PC[] + offset, BranchType_JMP);

0 1 0 1 0 1 0 0 imm19 0 cond
31 30 29 28 27 26 25 24 23 5 4 3 0

3

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

C1-144 Copyright © 2013-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487C.a
Non-Confidential ID121917

SP See Register names on page C1-145.

Wn See Register names on page C1-145.

WSP See Register names on page C1-145.

WZR See Register names on page C1-145.

Xn See Register names on page C1-145.

XZR See Register names on page C1-145

C1.2.3 Instruction Mnemonics

The A64 assembly language overloads instruction mnemonics and distinguishes between the different forms of an
instruction based on the operand types. For example, the following ADD instructions all have different opcodes.
However, the programmer must only remember one mnemonic, as the assembler automatically chooses the correct
opcode based on the operands. The disassembler follows the same procedure in reverse.

Example C1-1 ADD instructions with different opcodes

ADD W0, W1, W2 // add 32-bit register
ADD X0, X1, X2 // add 64-bit register
ADD X0, X1, W2, SXTW // add 64-bit extended register
ADD X0, X1, #42 // add 64-bit immediate

C1.2.4 Condition code

The A64 ISA has some instructions that set Condition flags or test Condition codes or both. For information about
instructions that set the Condition flags or use the condition mnemonics, see Condition flags and related instructions
on page C6-525.

Table C1-1 shows the available Condition codes.

Table C1-1 Condition codes

cond Mnemonic Meaning (integer) Meaning (floating-point)a Condition flags

0000 EQ Equal Equal Z == 1

0001 NE Not equal Not equal or unordered Z == 0

0010 CS or HS Carry set Greater than, equal, or unordered C == 1

0011 CC or LO Carry clear Less than C == 0

0100 MI Minus, negative Less than N == 1

0101 PL Plus, positive or zero Greater than, equal, or unordered N == 0

0110 VS Overflow Unordered V == 1

0111 VC No overflow Ordered V == 0

1000 HI Unsigned higher Greater than, or unordered C ==1 && Z == 0

1001 LS Unsigned lower or same Less than or equal !(C ==1 && Z ==0)

1010 GE Signed greater than or equal Greater than or equal N == V

1011 LT Signed less than Less than, or unordered N! = V

4

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

ARM DDI 0487C.a Copyright © 2013-2017 ARM Limited or its affiliates. All rights reserved. C1-145
ID121917 Non-Confidential

C1.2.5 Register names

This section describes the AArch64 registers. It contains the following subsections:
� General-purpose register file and zero register and stack pointer.
� SIMD and floating-point register file on page C1-146.
� SIMD and floating-point scalar register names on page C1-146.
� SIMD vector register names on page C1-147.
� SIMD vector element names on page C1-147.

General-purpose register file and zero register and stack pointer

The 31 general-purpose registers in the general-purpose register file are named R0-R30 and encoded in the
instruction register fields with values 0-30. In a general-purpose register field the value 31 represents either the
current stack pointer or the zero register, depending on the instruction and the operand position.

When the registers are used in a specific instruction variant, they must be qualified to indicate the operand data size,
32 bits or 64 bits, and the data size of the instruction.

When the data size is 32 bits, the lower 32 bits of the register are used and the upper 32 bits are ignored on a read
and cleared to zero on a write.

Table C1-2 shows the qualified names for registers, where n is a register number 0-30.

This list gives more information about the instruction arguments shown in Table C1-2:

� The names Xn and Wn both refer to the same general-purpose register, Rn.

� There is no register named W31 or X31.

1100 GT Signed greater than Greater than Z == 0 && N == V

1101 LE Signed less than or equal Less than, equal, or unordered !(Z == 0 && N == V)

1110 AL Always Always Any

1111 NVb Always Always Any

a. Unordered means at least one NaN operand.
b. The Condition code NV exists only to provide a valid disassembly of the 0b1111 encoding, otherwise its behavior is identical

to AL.

Table C1-1 Condition codes (continued)

cond Mnemonic Meaning (integer) Meaning (floating-point)a Condition flags

Table C1-2 Naming of general-purpose registers, the zero register, and the stack pointer

 Name Size Encoding Description

Wn 32 bits 0-30 General-purpose register 0-30

Xn 64 bits 0-30 General-purpose register 0-30

WZR 32 bits 31 Zero register

XZR 64 bits 31 Zero register

WSP 32 bits 31 Current stack pointer

SP 64 bits 31 Current stack pointer

5

C6 A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487C.a Copyright © 2013-2017 ARM Limited or its affiliates. All rights reserved. C6-541
ID121917 Non-Confidential

C6.2.9 ADR

Form PC-relative address adds an immediate value to the PC value to form a PC-relative address, and writes the
result to the destination register.

Literal variant

ADR <Xd>, <label>

Decode for this encoding

 integer d = UInt(Rd);
 bits(64) imm;

 imm = SignExtend(immhi:immlo, 64);

Assembler symbols

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<label> Is the program label whose address is to be calculated. Its offset from the address of this instruction,
in the range +/-1MB, is encoded in "immhi:immlo".

Operation

 bits(64) base = PC[];

 X[d] = base + imm;

0 immlo 1 0 0 0 0 immhi Rd
31 30 29 28 27 26 25 24 23 5 4 0

op

6

C6 A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

C6-794 Copyright © 2013-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487C.a
Non-Confidential ID121917

C6.2.167 MOV (wide immediate)

Move (wide immediate) moves a 16-bit immediate value to a register.

This instruction is an alias of the MOVZ instruction. This means that:

� The encodings in this description are named to match the encodings of MOVZ.

� The description of MOVZ gives the operational pseudocode for this instruction.

32-bit variant

Applies when sf == 0.

MOV <Wd>, #<imm>

is equivalent to

MOVZ <Wd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

64-bit variant

Applies when sf == 1.

MOV <Xd>, #<imm>

is equivalent to

MOVZ <Xd>, #<imm16>, LSL #<shift>

and is the preferred disassembly when ! (IsZero(imm16) && hw != '00').

Assembler symbols

<Wd> Is the 32-bit name of the general-purpose destination register, encoded in the "Rd" field.

<Xd> Is the 64-bit name of the general-purpose destination register, encoded in the "Rd" field.

<imm> For the 32-bit variant: is a 32-bit immediate which can be encoded in "imm16:hw".

For the 64-bit variant: is a 64-bit immediate which can be encoded in "imm16:hw".

<shift> For the 32-bit variant: is the amount by which to shift the immediate left, either 0 (the default) or
16, encoded in the "hw" field as <shift>/16.

For the 64-bit variant: is the amount by which to shift the immediate left, either 0 (the default), 16,
32 or 48, encoded in the "hw" field as <shift>/16.

Operation

The description of MOVZ gives the operational pseudocode for this instruction.

sf 1 0 1 0 0 1 0 1 hw imm16 Rd
31 30 29 28 27 26 25 24 23 22 21 20 5 4 0

opc

7

C6 A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

C6-906 Copyright © 2013-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487C.a
Non-Confidential ID121917

C6.2.244 STRB (immediate)

Store Register Byte (immediate) stores the least significant byte of a 32-bit register to memory. The address that is
used for the store is calculated from a base register and an immediate offset. For information about memory
accesses, see Load/Store addressing modes on page C1-149.

Post-index

Post-index variant

STRB <Wt>, [<Xn|SP>], #<simm>

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = TRUE;
 bits(64) offset = SignExtend(imm9, 64);

Pre-index

Pre-index variant

STRB <Wt>, [<Xn|SP>, #<simm>]!

Decode for this encoding

 boolean wback = TRUE;
 boolean postindex = FALSE;
 bits(64) offset = SignExtend(imm9, 64);

Unsigned offset

Unsigned offset variant

STRB <Wt>, [<Xn|SP>{, #<pimm>}]

Decode for this encoding

 boolean wback = FALSE;
 boolean postindex = FALSE;
 bits(64) offset = LSL(ZeroExtend(imm12, 64), 0);

0 0 1 1 1 0 0 0 0 0 0 imm9 0 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 0 0 0 0 imm9 1 1 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0

size opc

0 0 1 1 1 0 0 1 0 0 imm12 Rn Rt
31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

size opc

8

C6 A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

ARM DDI 0487C.a Copyright © 2013-2017 ARM Limited or its affiliates. All rights reserved. C6-907
ID121917 Non-Confidential

Notes for all encodings

For information about the CONSTRAINED UNPREDICTABLE behavior of this instruction, see Appendix K1
Architectural Constraints on UNPREDICTABLE behaviors, and particularly STRB (immediate) on page K1-6425.

Assembler symbols

<Wt> Is the 32-bit name of the general-purpose register to be transferred, encoded in the "Rt" field.

<Xn|SP> Is the 64-bit name of the general-purpose base register or stack pointer, encoded in the "Rn" field.

<simm> Is the signed immediate byte offset, in the range -256 to 255, encoded in the "imm9" field.

<pimm> Is the optional positive immediate byte offset, in the range 0 to 4095, defaulting to 0 and encoded
in the "imm12" field.

Shared decode for all encodings

 integer n = UInt(Rn);
 integer t = UInt(Rt);

Operation for all encodings

 bits(64) address;
 bits(8) data;
 boolean rt_unknown = FALSE;

 if wback && n == t && n != 31 then
 c = ConstrainUnpredictable();
 assert c IN {Constraint_NONE, Constraint_UNKNOWN, Constraint_UNDEF, Constraint_NOP};
 case c of
 when Constraint_NONE rt_unknown = FALSE; // value stored is original value
 when Constraint_UNKNOWN rt_unknown = TRUE; // value stored is UNKNOWN
 when Constraint_UNDEF UnallocatedEncoding();
 when Constraint_NOP EndOfInstruction();

 if n == 31 then
 CheckSPAlignment();
 address = SP[];
 else
 address = X[n];

 if !postindex then
 address = address + offset;

 if rt_unknown then
 data = bits(8) UNKNOWN;
 else
 data = X[t];
 Mem[address, 1, AccType_NORMAL] = data;

 if wback then
 if postindex then
 address = address + offset;
 if n == 31 then
 SP[] = address;
 else
 X[n] = address;

9

C6 A64 Base Instruction Descriptions
C6.2 Alphabetical list of A64 base instructions

C6-562 Copyright © 2013-2017 ARM Limited or its affiliates. All rights reserved. ARM DDI 0487C.a
Non-Confidential ID121917

C6.2.24 B

Branch causes an unconditional branch to a label at a PC-relative offset, with a hint that this is not a subroutine call
or return.

26-bit signed PC-relative branch offset variant

B <label>

Decode for this encoding

 bits(64) offset = SignExtend(imm26:'00', 64);

Assembler symbols

<label> Is the program label to be unconditionally branched to. Its offset from the address of this instruction,
in the range +/-128MB, is encoded as "imm26" times 4.

Operation

 BranchTo(PC[] + offset, BranchType_JMP);

0 0 0 1 0 1 imm26
31 30 29 28 27 26 25 0

op

10

