Princeton University
 COS 217：Introduction to Programming Systems ARMv8 Condition Flags

Condition Flags

Bits in the pstate register

CMP Xs｜SP，Xm
CPU performs the subtraction $X S \mid S P-X m$
More precisely，CPU performs the addition $X s \mid S P+\operatorname{onescomp}(X m)+1$ and sets the condition flags depending upon the sum：

Condition Code	
Z（zero flag）	CPU sets Z to 1 iff all bits of the sum are 0.
N（negative flag）	CPU sets N to 1 iff the most significant bit of the sum is 1.
C（carry flag）	CPU sets C to 1 iff the addition caused a carry．
V（overflow flag）	CPU sets V to 1 iff both addends are $>=0$ both addends are <0 and the sum is $>=0$.

Conditional Branch Instructions

（Used After Comparing Unsigned Numbers）

Instruction	
beq（branch iff equal）	Branch if and only if：
bne（branch iff not equal）	$\mathrm{Z}==1$
blo（branch iff lower）	$\mathrm{Z}==0$
bhs（branch iff higher or same）	$\mathrm{C}==0$
bls（branch iff lower or same）	$\mathrm{C}==1$
bhi（branch iff higher）	$\mathrm{C}==0$｜｜Z＝＝1

Why does blo branch iff $\mathrm{C}==0$ ？Examples（assuming a 4－bit computer）：

```
(1) 5 - 3 = 0101B - 0011 B = 0101 B + 1100 B + 1 = 0010B, C==1 => don't branch
(2) 5 - 0 = 0101B - 0000 B = 0101B + 1111 B + 1 = 1010B, C==1 => don't branch
(3) 3-5 = 0011的- 0101B = 0011 B + 1010B + 1 = 1110隹, C==0 => branch
(3) 0-5 = 0000 B - 0101 B = 0000 B + 1010 B + 1 = 1011冝, C==0 => branch
```

So branch if and only if $\mathrm{C}==0$ ．

Conditional Branch Instructions
 (Used After Comparing Signed Numbers)

Instruction		
beq (branch iff equal)	Branch if and only if:	
bne (branch iff not equal)	$\mathrm{Z}==1$	
blt (branch iff less than)	$\mathrm{Z}==0$	
bge (branch iff greater than or equal)	$\mathrm{N}!=\mathrm{V}$	
ble (branch iff less than or equal)	$\mathrm{N}==\mathrm{V}$	
bgt (branch iff greater than)	$\mathrm{N}!=\mathrm{V}$ \|	$\mathrm{Z}==1$

Why does blt branch iff if $\mathrm{N}!=\mathrm{V}$? Examples (assuming a 4 bit computer):
(1) $5-3=0101_{B}-0011_{B}=0101_{B}+1100_{B}+1=0010_{B}, \mathrm{~N}==0, \mathrm{~V}==0=>\mathrm{N}==\mathrm{V}=>$ don't branch
(2) $3-5=0011_{B}-0101_{B}=0011_{B}+1010_{B}+1=1110_{B}, N==1, V==0=>N!=V=>$ branch
(3) $-5--3=1011_{B}-1101_{B}=1011_{B}+0010_{B}+1=1110_{B}, N==1, V==0 \Rightarrow N!=V=>$ branch
(4) $-3--5=1101_{B}-1011_{B}=1101_{B}+0100_{B}+1=0010_{B}, N==0, V==0 \Rightarrow N==V=>$ don't branch
(5) $3-2=0011_{B}-1110_{B}=0011_{B}+0001_{B}+1=0101_{B}, N==0, V==0 \Rightarrow N==V=>$ don't branch
(6) $3--6=0011_{B}-1010_{B}=0011_{B}+0101_{B}+1=1001_{B}, N==1, V==1 \Rightarrow N==V=>$ don't branch
(7) $-3-2=1101_{B}-0010_{B}=1101_{B}+1101_{B}+1=1111_{B}, N==1, V==0 \Rightarrow N!=V=>$ branch
(8) $-3-6=1101_{B}-0110_{B}=1101_{B}+1001_{B}+1=0111_{B}, N==0, V==1 \Rightarrow N!=V=>$ branch

So branch if and only if $\mathrm{N}!=\mathrm{V}$.

Copyright © 2019 by Robert M. Dondero, Jr.

