

Some Key Concepts

- Course was organized around protocols
 - But a small set of concepts recur in many protocols
- General CS concepts
 - Hierarchy, indirection, caching, randomization
- Networking-specific concepts
 - Soft state, layering, (de)multiplexing
 - End-to-end argument

Key Concepts in Networking

Hierarchy

• Scalability of large systems

- Cannot store all information everywhere
- Cannot centrally coordinate everything
- Hierarchy to manage scale
 - Divide system into smaller pieces
- Hierarchy to divide control
 - Decentralized management
- Examples in the Internet
 - IP addresses, routing protocols, DNS, peer-to-peer

Indirection: Names vs. Addresses

- Host name to IP address
 - Mnemonic names to location-dependent addresses
 - E.g., from www.cnn.com to 64.236.16.20
 - Using the Domain Name System (DNS)
- From IP address to MAC address
 - From hierarchical global address to interface card
 - E.g., from 64.236.16.20 to 00-15-C5-49-04-A9
 - Using the Address Resolution Protocol (ARP)

Indirection: Load Balancers & Switches

- Not fixed binding of IPs or MAC address to physical machine
 - NAT allows multiple machines to share single public IP address
 - Load balancers: Machines share IP address, LB maps to physical machine by network flow
 - VM can migrate across L2 network through gratuitous ARP

Caching

- Duplicating data stored elsewhere
 - To reduce latency for accessing the data
 - To reduce resources consumed
- Caching is often quite effective
 - Speed difference between cache and primary copy
 - Locality of reference, and small set of popular data
- Examples from the Internet
 - DNS caching, Web caching

Randomization: Ethernet Back-off

- Random access: exponential back-off
 - After collision, wait random time before retrying
 - After mth, choose K randomly from {0, ..., 2^m-1}
 - Wait for K*512 bit times before trying again

Randomization: Dropping Packets Early

- Congestion on a link
 - Eventually the queue becomes full
 - And new packets must be dropped
- Drop-tail queuing leads to bursty loss
 - Many packets encounter a full queue
 - Many TCP senders reduce their sending rates

Soft State: DNS Caching

- Cache consistency is a hard problem
 Ensuring the cached copy is not out of date
- · Strawman: explicit revocation or updates
 - Keep track of everyone who has cached information
 - If name-to-host mapping changes, update caches
- Soft state solution
 - DNS responses include a "time to live" (TTL) field
 - Cached entry is deleted after TTL expires

Soft State: DHCP Leases

- DHCP "offer message" from the server
 - Configuration parameters (proposed IP address, mask, gateway router, DNS server, ...)
 - Lease time (the time information remains valid)
- Why is a lease time necessary?
 - Client can release address (DHCP RELEASE)
 - E.g., "ipconfig /release" or clean shutdown of computer
 - But, the host might not release the address
 - E.g., the host crashes or buggy client software
 - You don't want address to be allocated forever

Power at the End Host

End-to-End Principle

Whenever possible, communications protocol operations should be defined to occur at the end-points of a communications system.

Programmability

With programmable end hosts, new network services can be added at any time, by anyone.

Why No Math in This Course?

• Hypothesis #1: theory not relevant to Internet

- Body of math created for telephone networks
- Many of these models don't work in data networks
- Hypothesis #2: too many kinds of theory
 - Queuing: statistical multiplexing works
 - Control: TCP congestion control works
 - Optimization: TCP maximizes aggregate utility
 - Game: reasoning about competing ASes

<section-header>

Protocols Designed Based on Trust

- That you don't spoof your addresses
 MAC spoofing, IP address spoofing, spam, ...
- That port numbers correspond to applications
 Rather than being arbitrary, meaningless numbers
- That you adhere to the protocol
 - Ethernet exponential back-off after a collision
 - TCP additive increase, multiplicative decrease
- That protocol specifications are public
 - So others can build interoperable implementations

Nobody in Charge

- Traffic traverses many Autonomous Systems
 - Who's fault is it when things go wrong?
 - How do you upgrade functionality?
- Implicit trust in the end host
 - What if some hosts violate congestion control?
- Anyone can add any application
 - Whether or not it is legal, moral, good, etc.
- Spans many countries
 - So no one government can be in charge

Challenging New Requirements

- Disseminating data
- Mobile, multi-homed hosts
- Sometimes-connected hosts
- Large number of hosts
- Real-time applications

The Internet of the Future

• Can we fix what ails the Internet

- Security, performance, reliability
- Upgradability, managability
- <Your favorite gripe here>
- Without throwing out baby with bathwater
 - Ease of adding new hosts
 - Ease of adding new services
 - Ease of adding new link technologies
- An open technical and policy question...

Thank You!

