
1

Programmable Networks

Jennifer Rexford
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr20/cos461/

The Internet: A Remarkable Story
• Tremendous success
– From research experiment

to global infrastructure

• Brilliance of under-specifying
– Network: best-effort packet delivery
– Hosts: arbitrary applications

• Enables innovation in applications
– Web, P2P, VoIP, social networks, smart cars, …

• But, change is easy only at the edge… L

2

Inside the ‘Net: A Different Story…
• Closed equipment
– Software bundled with hardware
– Vendor-specific interfaces

• Over specified
– Slow protocol standardization

• Few people can innovate
– Equipment vendors write the code
– Long delays to introduce new features

Impacts performance, security, reliability, cost…

3

Networks are Hard to Manage

• Operating a network is expensive
– More than half the cost of a network

– Yet, operator error causes most outages

• Buggy software in the equipment
– Routers with 20+ million lines of code

– Cascading failures, vulnerabilities, etc.

• The network is “in the way”
– Especially in data centers and the home

4

2

A Helpful Analogy

From Nick McKeown’s talk “Making
SDN Work” at the Open Networking

Summit, April 2012

5

Vertically integrated
Closed, proprietary

Slow innovation
Small industry

Specialized
Operating

System

Specialized
Hardware

AppAppAppAppAppAppAppAppAppAppApp

Specialized
Applications

Horizontal
Open interfaces

Rapid innovation
Huge industry

Microprocessor

Open Interface

Linux Mac
OS

Windows
(OS) or or

Open Interface

Mainframes
6

Vertically integrated
Closed, proprietary

Slow innovation

Horizontal
Open interfaces
Rapid innovation

Control
Plane

Control
Plane

Control
Plane or or

Open Interface

Specialized
Control
Plane

Specialized
Hardware

Specialized
Features

Merchant
Switching Chips

Open Interface

Routers/Switches
7

AppAppAppAppAppAppAppAppAppAppApp

Rethinking the “Division of Labor”

8

3

Traditional Computer Networks

Data plane:
Packet

streaming

Forward, filter, buffer, mark,
rate-limit, and measure packets

9

Traditional Computer Networks

Track topology changes, compute
routes, install forwarding rules

Control plane:
Distributed algorithms

10

Traditional Computer Networks

Collect measurements and
configure the equipment

Management plane:
Human time scale

11

Death to the Control Plane!

• Simpler management
– No need to “invert” control-plane operations

• Faster pace of innovation
– Less dependence on vendors and standards

• Easier interoperability
– Compatibility only in “wire” protocols

• Simpler, cheaper equipment
– Minimal software

12

4

Software Defined Networking (SDN)

API to the data plane
(e.g., OpenFlow)

Logically-centralized control

Dumb &
fast

Smart &
slow

13

Switches

OpenFlow Networks

http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf

14

Data-Plane: Simple Packet Handling

• Simple packet-handling rules
– Pattern: match packet header bits
– Actions: drop, forward, modify, send to controller
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

1. src=1.2.*.*, dest=3.4.5.* à drop
2. src = *.*.*.*, dest=3.4.*.* à forward(2)
3. src=10.1.2.3, dest=*.*.*.* à send to controller

15

Unifies Different Kinds of Boxes

• Router
– Match: longest destination

IP prefix
– Action: forward out a link

• Switch
– Match: dest MAC address
– Action: forward or flood

• Firewall
– Match: IP addresses and TCP

/UDP port numbers
– Action: permit or deny

• NAT
– Match: IP address and port
– Action: rewrite addr and port

16

http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf

5

Controller: Programmability
17

Network OS

Controller Application

Events from switches
Topology changes,

Traffic statistics,
Arriving packets

Commands to switches
(Un)install rules,
Query statistics,

Send packets

OpenFlow questions
• OpenFlow designed for

(A) Inter-domain management (between)
(B) Intra-domain management (within)

• OpenFlow API to switches open up the
(A) RIB (B) FIB

• OpenFlow FIB match based on
(A) Exact match (e.g., MAC addresses)
(B) Longest prefix (e.g., IP addresses)
(C) It’s complicated

18

Example OpenFlow Applications
• Dynamic access control
• Seamless mobility/migration
• Server load balancing
• Network virtualization
• Using multiple wireless access points
• Energy-efficient networking
• Adaptive traffic monitoring
• Denial-of-Service attack detection

19

E.g.: Dynamic Access Control

• Inspect first packet of a connection
• Consult the access control policy
• Install rules to block or route traffic

20

6

E.g.: Seamless Mobility/Migration

• See host send traffic at new location
• Modify rules to reroute the traffic

21

E.g.: Server Load Balancing
• Pre-install load-balancing policy
• Split traffic based on source IP

22

src=0*

src=1*

E.g.: Network Virtualization
23

Partition the space of packet headers

Controller #1 Controller #2 Controller #3

Controller and the FIB

• Forwarding rules should be added
(A) Proactively
(B) Reactively (e.g., with controller getting first packet)
(C) Depends on application

24

7

OpenFlow in the Wild
• Open Networking Foundation

– Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche Telekom,
and many other companies

• Commercial OpenFlow switches
– Intel, HP, NEC, Quanta, Dell, IBM, Juniper, …

• Network operating systems
– NOX, Beacon, Floodlight, Nettle, ONIX, POX, Frenetic

• Network deployments
– Data centers
– Cloud provider backbones
– Public backbones

25

Programmable Data Planes

https://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000004.pdf

26

In the Beginning…

• OpenFlow was simple

• A single rule table
– Priority, pattern, actions, counters, timeouts

• Matching on any of 12 fields, e.g.,
– MAC addresses
– IP addresses
– Transport protocol
– Transport port numbers

27

``Second System” Syndrome

• OpenFlow 1.0 limitations

– One rule table

– Limited headers and actions

– Sending packets to the controller

• Later version of OpenFlow

– More tables, headers, actions

– But, still never enough

– Where does it stop?!?

28

Version Date # Headers
OF 1.0 Dec ‘09 12

OF 1.1 Feb ‘11 15

OF 1.2 Dec ‘11 36

OF 1.3 Jun ‘12 40

OF 1.4 Oct ‘13 41

https://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000004.pdf

8

Programmable Data Planes

• Data plane designed for programmability
– Programmable parsing
– Typed match-action tables
– Programmable actions
– Storing and piggybacking metadata

29

Stages

DeparserParser

M
em

or
y

Persistent
State

ALU Match-
Action
Table

Flexible, But With Constraints
30

Packet
parser

Match Action
m1 a1

registers

Match-action
tables

Match Action
m1 a1

registers

Match-action
tables

. . .
metadata

Small
amount of
memory

Pipelined
computation

Limited
computation

headers

Limited # of
bits

Domain-specific processors: GPUs, TPUs, packet processors, …

P4 Language
(https://p4.org/)

• Protocol independence
– Configure a packet parser
– Define typed match+action tables

• Target independence
– Program without knowledge of switch details
– Rely on compiler to configure the target switch

• Reconfigurability
– Change parsing and processing in the field

31

Heavy-Hitter Detection
(Junior IW Project)

Vibhaa Sivamaran ‘17

32

https://p4.org/

9

Heavy-Hitter Detection

• Heavy hitters
–The k largest trafic flows
–Flows exceeding count

threshold T
• Space-saving algorithm
–Table of (key, value) pairs
–Evict the key with the

minimum value

Id Count
K1 4
K2 2
K3 7
K4 10
K5 1
K6 5

New
Key
K7

Table
scan

Approximating the Approximation
• Evict minimum of d entries
– Rather than minimum of all entries
– E.g., with d = 2 hash functions

34

Id Count
K1 4
K2 2
K3 7
K4 10
K5 1
K6 5

New Key K7
Multiple
memory

accesses

Approximating the Approximation

• Divide the table over d stages
– One memory access per stage
– Two different hash functions

35

Id Count
K1 4
K2 2
K3 7

New Key K7
Id Count
K4 10
K5 1
K6 5

Going back
to the first

table

Approximating the Approximation
• Rolling minimum across stages
– Avoid recirculating the packet
– … by carrying the minimum along the pipeline

36

Id Count
K1 4
K2 10
K3 7

New Key K7

Id Count
K4 2
K5 1
K6 5

Id Count
K1 4
K7 1
K3 7

Id Count
K2 10
K5 1
K6 5

(K2, 10)

10

P4 Prototype and Evaluation
37

Id Count
K1 4
K2 10
K3 7

Id Count
K4 2
K5 1
K6 5

New Key K7 (K2, 10)

Hash on
packet
header

Packet
metadata

Conditional updates
to compute
minimum

Register
arrays

High accuracy with overhead proportional to # of heavy hitters

Undergraduate Student Projects
• OpenFlow
– Hierarchical heavy hitters (Lavanya Jose ‘12)
– Server load balancing (Dana Butnariu ‘13)

• P4
– Heavy-hitter detection (Vibhaa Sivaraman ‘17)
– Censorship circumvention (Blake Lawson ‘17)
– Round-trip time measurement (Mack Lee ‘18)
– Operating system fingerprinting (Sherry Bai ‘19)
– Surveillance protection (Trisha Datta ‘19)
– Heavy-hitters by domain name (Jason Kim ‘21)

38

Princeton Campus Deployment
(https://p4campus.cs.princeton.edu)

• Deployed: Microburst analysis, heavy hitter detection, trace anonymization
• In progress: surveillance protection, RTT, DNS heavy hitters, OS fingerprinting

39

Internet2

Princeton
Campus

Internet

Mirrored
traffic

Tofino-2Tofino-1

Network
TAPs

Firewall

Conclusion

• Rethinking networking
– Open interfaces to the data plane
– Separation of control and data
– Deployment of new solutions

• Significant momentum
– In industry and in academic research

• Next steps
– Enterprises
– Cellular (5G) networks

40

