

Programmable Networks

Jennifer Rexford COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr20/cos461/

The Internet: A Remarkable Story

- Tremendous success
 - From research experiment to global infrastructure

- Brilliance of under-specifying
 - Network: best-effort packet delivery
 - Hosts: arbitrary applications
- Enables innovation in applications
 - Web, P2P, VoIP, social networks, smart cars, ...
- But, change is easy only at the edge... $\ensuremath{\mathfrak{S}}$

Inside the 'Net: A Different Story...

- Closed equipment
 - Software bundled with hardware
 - Vendor-specific interfaces
- Over specified

- Slow protocol standardization
- Few people can innovate
 - Equipment vendors write the code
 - Long delays to introduce new features

Impacts performance, security, reliability, cost...

Networks are Hard to Manage

• Operating a network is expensive

- More than half the cost of a network
- Yet, operator error causes most outages

• Buggy software in the equipment

- Routers with 20+ million lines of code
- Cascading failures, vulnerabilities, etc.

Bugs

Unifies Different Kinds of Boxes

- Router
 - Match: longest destination IP prefix
 - Action: forward out a link
- Switch
- Match: dest MAC address
 Ma
- Action: forward or flood

- Firewall

 Match: IP addresses and TCP
 - /UDP port numbers
 - Action: permit or deny
- NAT
 - Match: IP address and port
 - Action: rewrite addr and port

Example OpenFlow Applications

- Dynamic access control
- Seamless mobility/migration
- Server load balancing
- Network virtualization
- Using multiple wireless access points
- Energy-efficient networking
- Adaptive traffic monitoring
- Denial-of-Service attack detection

Controller and the FIB

- Forwarding rules should be added
 - (A) Proactively
 - (B) Reactively (e.g., with controller getting first packet)
 - (C) Depends on application

OpenFlow in the Wild

- Open Networking Foundation
 - Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche Telekom, and many other companies
- Commercial OpenFlow switches
 - Intel, HP, NEC, Quanta, Dell, IBM, Juniper, ...
- Network operating systems
 - NOX, Beacon, Floodlight, Nettle, ONIX, POX, Frenetic
- Network deployments
 - Data centers
 - Cloud provider backbones
 - Public backbones

In the Beginning...

- OpenFlow was simple
- A single rule table
 - Priority, pattern, actions, counters, timeouts
- Matching on any of 12 fields, e.g.,
 - MAC addresses
 - IP addresses
 - Transport protocol
 - Transport port numbers

``Second System" Syndrome

https://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000004.pdf

Programmable Data Planes

- OpenFlow 1.0 limitations
 - One rule table
 - Limited headers and actions
 - Sending packets to the controller
- Later version of OpenFlow
 - More tables, headers, actions
 - But, still never enough
 - Where does it stop?!? OF 1.0 OF 1.1

Headers

12

15

36

40

41

Date

Dec '09

Feb '11

Dec '11

Jun '12

OF 1.4 Oct '13

OF 1.2

OF 1.3

