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Programmable Networks

Jennifer Rexford
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr20/cos461/

The Internet: A Remarkable Story
• Tremendous success
– From research experiment 

to global infrastructure

• Brilliance of under-specifying
– Network: best-effort packet delivery
– Hosts: arbitrary applications

• Enables innovation in applications
– Web, P2P, VoIP, social networks, smart cars, …

• But, change is easy only at the edge… L
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Inside the ‘Net: A Different Story…
• Closed equipment
– Software bundled with hardware
– Vendor-specific interfaces

• Over specified
– Slow protocol standardization

• Few people can innovate
– Equipment vendors write the code
– Long delays to introduce new features

Impacts performance, security, reliability, cost…
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Networks are Hard to Manage

• Operating a network is expensive
– More than half the cost of a network

– Yet, operator error causes most outages

• Buggy software in the equipment
– Routers with 20+ million lines of code

– Cascading failures, vulnerabilities, etc.

• The network is “in the way”
– Especially in data centers and the home
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A Helpful Analogy

From Nick McKeown’s talk “Making 
SDN Work” at the Open Networking 

Summit, April 2012
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Rethinking the “Division of Labor”
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Traditional Computer Networks

Data plane:
Packet 

streaming

Forward, filter, buffer, mark, 
rate-limit, and measure packets
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Traditional Computer Networks

Track topology changes, compute 
routes, install forwarding rules

Control plane:
Distributed algorithms
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Traditional Computer Networks

Collect measurements and 
configure the equipment

Management plane:
Human time scale
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Death to the Control Plane!

• Simpler management
– No need to “invert” control-plane operations

• Faster pace of innovation
– Less dependence on vendors and standards

• Easier interoperability
– Compatibility only in “wire” protocols

• Simpler, cheaper equipment
– Minimal software
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Software Defined Networking (SDN)

API to the data plane
(e.g., OpenFlow)

Logically-centralized control

Dumb &
fast

Smart &
slow
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Switches

OpenFlow Networks

http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf
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Data-Plane: Simple Packet Handling

• Simple packet-handling rules
– Pattern: match packet header bits
– Actions: drop, forward, modify, send to controller 
– Priority: disambiguate overlapping patterns
– Counters: #bytes and #packets

1. src=1.2.*.*,    dest=3.4.5.* à drop                        
2. src = *.*.*.*,  dest=3.4.*.* à forward(2)
3.   src=10.1.2.3, dest=*.*.*.* à send to controller

15

Unifies Different Kinds of Boxes

• Router
– Match: longest destination 

IP prefix
– Action: forward out a link

• Switch
– Match: dest MAC address
– Action: forward or flood

• Firewall
– Match: IP addresses and TCP 

/UDP port numbers
– Action: permit or deny 

• NAT
– Match: IP address and port
– Action: rewrite addr and port
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http://ccr.sigcomm.org/online/files/p69-v38n2n-mckeown.pdf
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Controller: Programmability
17

Network OS

Controller Application

Events from switches
Topology changes,

Traffic statistics,
Arriving packets

Commands to switches
(Un)install rules,
Query statistics,

Send packets

OpenFlow questions
• OpenFlow designed for

(A) Inter-domain management (between)
(B) Intra-domain management (within)

• OpenFlow API to switches open up the
(A) RIB (B)  FIB

• OpenFlow FIB match based on
(A) Exact match (e.g., MAC addresses)
(B) Longest prefix (e.g., IP addresses)
(C) It’s complicated
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Example OpenFlow Applications
• Dynamic access control
• Seamless mobility/migration
• Server load balancing
• Network virtualization
• Using multiple wireless access points
• Energy-efficient networking
• Adaptive traffic monitoring
• Denial-of-Service attack detection
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E.g.: Dynamic Access Control

• Inspect first packet of a connection
• Consult the access control policy
• Install rules to block or route traffic
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E.g.: Seamless Mobility/Migration

• See host send traffic at new location
• Modify rules to reroute the traffic
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E.g.: Server Load Balancing
• Pre-install load-balancing policy
• Split traffic based on source IP
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src=0*

src=1*

E.g.: Network Virtualization
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Partition the space of packet headers

Controller #1 Controller #2 Controller #3

Controller and the FIB

• Forwarding rules should be added
(A) Proactively
(B) Reactively (e.g., with controller getting first packet)
(C) Depends on application

24
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OpenFlow in the Wild
• Open Networking Foundation

– Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche Telekom, 
and many other companies

• Commercial OpenFlow switches
– Intel, HP, NEC, Quanta, Dell, IBM, Juniper, …

• Network operating systems
– NOX, Beacon, Floodlight, Nettle, ONIX, POX, Frenetic

• Network deployments
– Data centers
– Cloud provider backbones
– Public backbones
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Programmable Data Planes

https://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000004.pdf
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In the Beginning…

• OpenFlow was simple

• A single rule table
– Priority, pattern, actions, counters, timeouts

• Matching on any of 12 fields, e.g.,
– MAC addresses
– IP addresses
– Transport protocol 
– Transport port numbers
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``Second System” Syndrome

• OpenFlow 1.0 limitations

– One rule table

– Limited headers and actions

– Sending packets to the controller

• Later version of OpenFlow

– More tables, headers, actions

– But, still never enough

– Where does it stop?!?
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Version Date # Headers
OF 1.0 Dec ‘09 12

OF 1.1 Feb ‘11 15

OF 1.2 Dec ‘11 36

OF 1.3 Jun ‘12 40

OF 1.4 Oct ‘13 41

https://www.sigcomm.org/sites/default/files/ccr/papers/2014/July/0000000-0000004.pdf
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Programmable Data Planes

• Data plane designed for programmability
– Programmable parsing
– Typed match-action tables
– Programmable actions
– Storing and piggybacking metadata
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Domain-specific processors: GPUs, TPUs, packet processors, …

P4 Language 
(https://p4.org/)

• Protocol independence
– Configure a packet parser
– Define typed match+action tables

• Target independence
– Program without knowledge of switch details
– Rely on compiler to configure the target switch

• Reconfigurability
– Change parsing and processing in the field
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Heavy-Hitter Detection
(Junior IW Project)

Vibhaa Sivamaran ‘17

32

https://p4.org/
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Heavy-Hitter Detection

• Heavy hitters
–The k largest trafic flows
–Flows exceeding count 

threshold T
• Space-saving algorithm
–Table of (key, value) pairs
–Evict the key with the 

minimum value

Id Count
K1 4
K2 2
K3 7
K4 10
K5 1
K6 5

New 
Key 
K7

Table 
scan

Approximating the Approximation
• Evict minimum of d entries
– Rather than minimum of all entries
– E.g., with d = 2 hash functions
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Id Count
K1 4
K2 2
K3 7
K4 10
K5 1
K6 5

New Key K7
Multiple 
memory 

accesses

Approximating the Approximation

• Divide the table over d stages
– One memory access per stage
– Two different hash functions
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Id Count
K1 4
K2 2
K3 7

New Key K7
Id Count
K4 10
K5 1
K6 5

Going back 
to the first 

table

Approximating the Approximation
• Rolling minimum across stages
– Avoid recirculating the packet
– … by carrying the minimum along the pipeline

36

Id Count
K1 4
K2 10
K3 7

New Key K7

Id Count
K4 2
K5 1
K6 5

Id Count
K1 4
K7 1
K3 7

Id Count
K2 10
K5 1
K6 5

(K2, 10)
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P4 Prototype and Evaluation
37

Id Count
K1 4
K2 10
K3 7

Id Count
K4 2
K5 1
K6 5

New Key K7 (K2, 10)

Hash on 
packet 
header

Packet 
metadata

Conditional updates 
to compute 
minimum

Register 
arrays

High accuracy with overhead proportional to # of heavy hitters

Undergraduate Student Projects
• OpenFlow
– Hierarchical heavy hitters (Lavanya Jose ‘12)
– Server load balancing (Dana Butnariu ‘13)

• P4
– Heavy-hitter detection (Vibhaa Sivaraman ‘17)
– Censorship circumvention (Blake Lawson ‘17)
– Round-trip time measurement (Mack Lee ‘18)
– Operating system fingerprinting (Sherry Bai ‘19)
– Surveillance protection (Trisha Datta ‘19)
– Heavy-hitters by domain name (Jason Kim ‘21)
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Princeton Campus Deployment
(https://p4campus.cs.princeton.edu)

• Deployed: Microburst analysis, heavy hitter detection, trace anonymization
• In progress: surveillance protection, RTT, DNS heavy hitters, OS fingerprinting
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Internet2

Princeton 
Campus

Internet

Mirrored
traffic

Tofino-2Tofino-1

Network 
TAPs

Firewall

Conclusion

• Rethinking networking
– Open interfaces to the data plane
– Separation of control and data
– Deployment of new solutions

• Significant momentum
– In industry and in academic research

• Next steps
– Enterprises
– Cellular (5G) networks
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