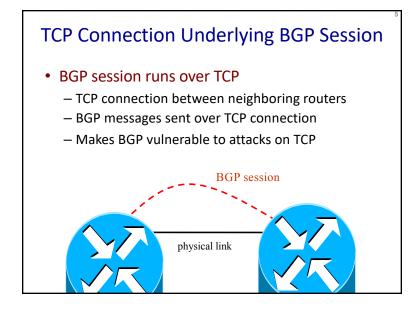
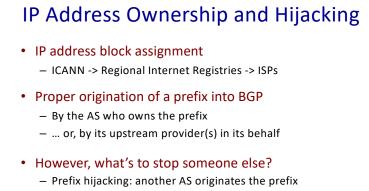


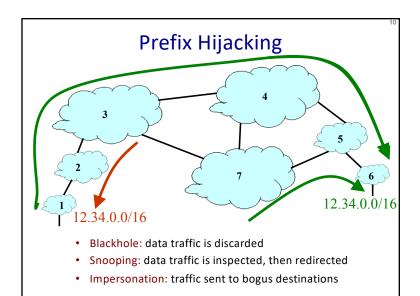
Interdomain Routing Security


Mike Freedman COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr20/cos461/

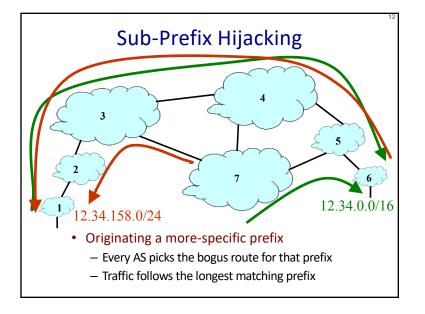

Attacks on Session Security

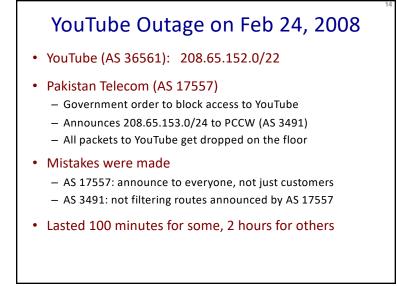
- Confidentiality
 - Eavesdropping by tapping the link
 - Inferring routing policies and stability
- Integrity
 - Tampering by dropping, modifying, adding packets
 - Changing, filtering, or replaying BGP routes
- Availability
 - Resetting the session or congesting the link
 - Disrupting communication and overloading routers


Defending Session Security is Easy

- BGP routing information is propagated widely - Confidentiality isn't all that important
- Two end-points have a business relationship
 - Use known IP addresses and ports to communicate
 - Can agree to sign and encrypt messages
- Limited physical access to the path
 - Direct physical link, often in same building
- Low volume of special traffic
 - Filter packets from unexpected senders
 - Can give BGP packets higher priority

Validity of the routing information: Origin authentication

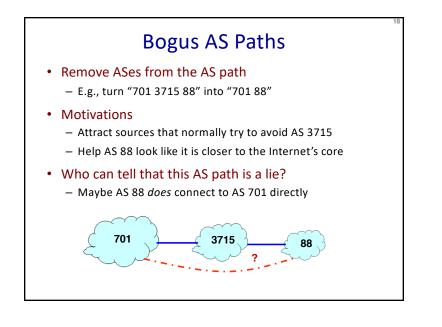

- BGP does not verify that the AS is authorized
- Registries of prefix ownership are inaccurate

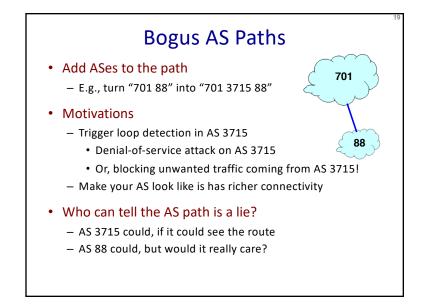


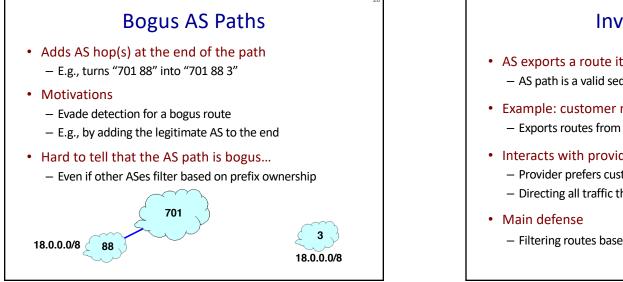
Hijacking is Hard to Debug

- The victim AS doesn't see the problem
 Picks its own route, might not learn the bogus route
- May not cause loss of connectivity

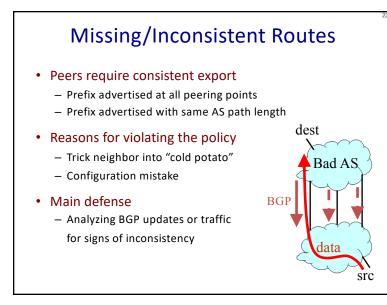
 Snooping, with minor performance degradation
- Or, loss of connectivity is isolated
 E.g., only for sources in parts of the Internet
- Diagnosing prefix hijacking
 - Analyzing updates from many vantage points
 - Launching traceroute from many vantage points

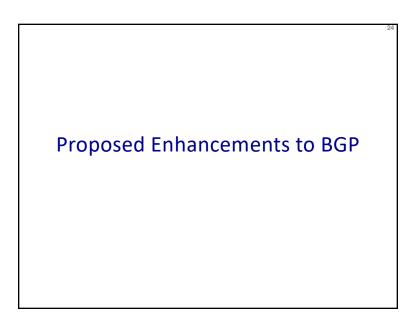

Timeline (UTC Time)

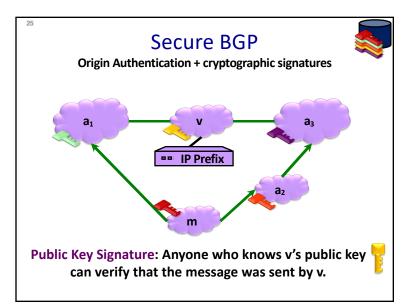

- 18:47:45: First evidence of hijacked /24 route in Asia
- 18:48:00: Several big trans-Pacific providers carrying route
- 18:49:30: Bogus route fully propagated
- 20:07:25: YouTube advertising /24 to attract traffic back
- 20:08:30: Many (but not all) providers are using valid route
- 20:18:43: YouTube announces two more-specific /25 routes
- 20:19:37: Some more providers start using the /25 routes
- 20:50:59: AS 17557 starts prepending ("3491 17557 17557")
- 20:59:39: AS 3491 disconnects AS 17557
- 21:00:00: Videos of cats flushing toilets are available again!

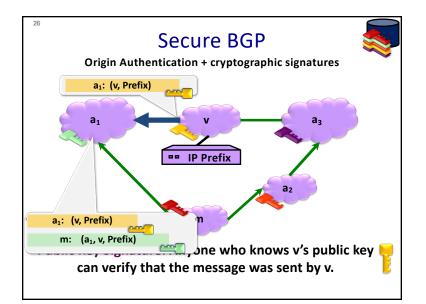

Another Example: Spammers

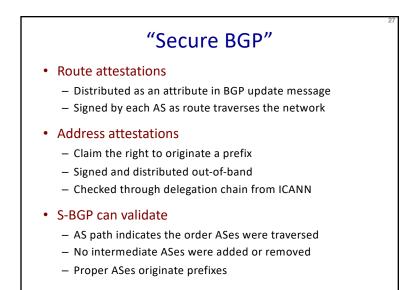
- Spammers sending spam
 - Form a (bidrectional) TCP connection to mail server
 - Send a bunch of spam e-mail, then disconnect
- But, best not to use your real IP address
 Relatively easy to trace back to you
- Could hijack someone's address space
 - But you might not receive all the (TCP) return traffic
- How to evade detection
 - Hijack unused (i.e., unallocated) address block
 - Temporarily use the IP addresses to send your spam


BGP AS Path

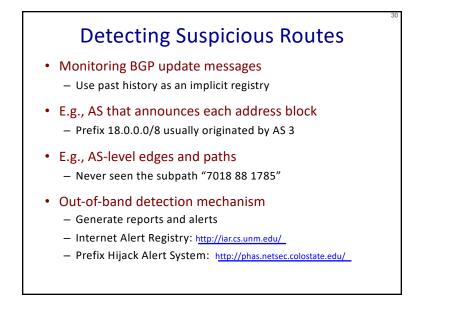



BGP Security Today


- Applying "best common practices"
 - Securing the session (authentication, encryption)
 - Filtering routes by prefix and AS path
 - Packet filters to block unexpected control traffic


• This is not good enough

- Depends on vigilant application of practices
- Doesn't address fundamental problems
 - Can't tell who owns the IP address block
 - · Can't tell if the AS path is bogus or invalid
 - Can't be sure the data packets follow the chosen route


S-BGP Deployment Challenges

- Complete, accurate registries of prefix "owner"
- Public Key Infrastructure
 - To know the public key for any given AS
- Cryptographic operations
 - E.g., digital signatures on BGP messages
- Need to perform operations quickly

 To avoid delaying response to routing changes
- Difficulty of incremental deployment — Hard to have a "flag day" to deploy S-BGP

Incrementally Deployable Solutions?

- Backwards compatible
 - No changes to router hardware or software
 - No cooperation from other ASes
- Incentives for early adopters
 - Security benefits for ASes that deploy the solution
 - ... and further incentives for others to deploy
- What kind of solutions are possible?
 - Detecting suspicious routes
 - ... and then filtering or depreferencing them

Avoiding Suspicious Routes

- · Soft response to suspicious routes
 - Prefer routes that agree with the past
 - Delay adoption of unfamiliar routes when possible
- Why is this good enough?
 - Some attacks will go away on their own
 - Let someone else be the victim instead of you
 - Give network operators time to investigate
- · How well would it work?
 - If top ~40 largest ASes applied the technique
 - ... most other ASes are protected, too

What About Packet Forwarding?

Control Plane vs. Data Plane

Control plane

- BGP security concerns validity of routing messages
- I.e., did the BGP message follow the sequence of ASes listed in the AS-path attribute
- Data plane
 - Routers forward data packets
 - Supposedly along path chosen in the control plane
 - But what ensures that this is true?

Data-Plane Attacks, Part 1

- Drop packets in the data plane
 - While still sending the routing announcements
- · Easier to evade detection
 - Especially if you only drop some packets
 - Like, oh, say, BitTorrent or Skype traffic
- Even easier if you just slow down some traffic
 - How different are normal congestion and an attack?
 - Especially if you let traceroute packets through?

Data-Plane Attacks, Part 2

- Send packets in a different direction
 - Disagreeing with the routing announcements
- Direct packets to a different destination
 - E.g., one the adversary controls
- What to do at that bogus destination?
 - Impersonate the legitimate destination
 - Snoop on traffic and forward along to real destination
- How to detect?
 - Traceroute? Longer than usual delays?
 - End-to-end checks, like site certificate or encryption?

Data-Plane Attacks are Harder

- Adversary must control a router along the path
 So that the traffic flows through him
- How to get control a router
 - Buy access to a compromised router online
 - Guess the password, exploit router vulnerabilities
 - Insider attack (disgruntled network operator)
- Malice vs. greed
 - Malice: gain control of someone else's router
 - Greed: say, Verizon DSL blocks Skype to encourage me to use (Verizon) landline phone

What's the Internet to Do?

BGP is So Vulnerable

- Several high-profile outages
 - http://merit.edu/mail.archives/nanog/1997-04/msg00380.html
 - <u>http://www.renesys.com/blog/2005/12/internetwide_nearcatastrophela.shtml</u>
 - http://www.renesys.com/blog/2006/01/coned_steals_the_net.shtml
 - <u>http://www.renesys.com/blog/2008/02/pakistan_hijacks_youtube_1.shtml</u>
 - http://www.theregister.co.uk/2010/04/09/china_bgp_interweb_snafu/____
- Many smaller examples
 - Blackholing a single destination prefix
 - Hijacking unallocated addresses to send spam
- Why isn't it an even bigger deal?
 - Really, most big outages are configuration errors
 - Most bad guys want the Internet to stay up

BGP is So Hard to Fix

• Complex system

- Large, with around 40,000 ASes
- Decentralized control among competitive Ases
- Hard to reach agreement on the right solution
 - S-BGP with PKI, registries, and crypto?
 - Who should be in charge of running PKI & registries?
 - Worry about data-plane attacks or just control plane?
- Hard to deploy the solution once you pick it
 - Hard enough to get ASes to apply route filters
 - Now you want them to upgrade to a new protocol

Conclusions

Internet protocols designed based on trust
 Insiders are good guys, bad guys on the outside

- Border Gateway Protocol is very vulnerable
 - Glue that holds the Internet together
 - Hard for an AS to locally identify bogus routes
 - Attacks can have very serious global consequences
- Proposed solutions/approaches
 - Secure variants of the Border Gateway Protocol
 - Anomaly detection, with automated response
 - Broader focus on data-plane availability