Naming Security

Mike Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr20/cos461/

Network Security

• Application layer
 – E-mail: PGP, using a web-of-trust
 – Web: HTTP-S, using a certificate hierarchy
• Transport layer
 – Transport Layer Security/ Secure Socket Layer
• Network layer
 – IP Sec
• Network infrastructure
 – DNS-Sec and BGP-Sec

Transport Layer Security (TLS)

Based on the earlier Secure Socket Layer (SSL) originally developed by Netscape
TLS Handshake Protocol

- Send new random value, list of supported ciphers
- Send pre-secret, encrypted under PK
- Create shared secret key from pre-secret and random
- Switch to new symmetric-key cipher using shared key

TLS Record Protocol

- Messages from application layer are:
 - Fragmented or coalesced into blocks
 - Optionally compressed
 - Integrity-protected using an HMAC
 - Encrypted using symmetric-key cipher
 - Passed to the transport layer (usually TCP)

- Sequence #s on record-protocol messages
 - Prevents replays and reorderings of messages

Comments on HTTPS

- HTTPS authenticates server, not content
 - If CDN (Akamai) serves content over HTTPS, customer must trust Akamai not to change content
- Symmetric-key crypto after public-key ops
 - Handshake protocol using public key crypto
 - Symmetric-key crypto much faster (100-1000x)
- HTTPS on top of TCP, so reliable byte stream
 - Can leverage fact that transmission is reliable to ensure: each data segment received exactly once
 - Adversary can’t successfully drop or replay packets

IP Security
IP Security

- There are a range of app-specific security mechanisms
 - e.g., TLS/HTTPS, S/MIME, PGP, Kerberos, ...
- But security concerns that cut across protocol layers
- Implement by the network for all applications?

Enter IPSec!

IPSec

- General IP Security framework
- Allows one to provide
 - Access control, integrity, authentication, originality, and confidentiality
- Applicable to different settings
 - Narrow streams: Specific TCP connections
 - Wide streams: All packets between two gateways

IPSec Uses

Benefits of IPSec

- If in a firewall/router:
 - Strong security to all traffic crossing perimeter
 - Resistant to bypass
- Below transport layer
 - Transparent to applications
 - Can be transparent to end users
- Can provide security for individual users
IP Security Architecture

- Specification quite complex
 - Mandatory in IPv6, optional in IPv4
- Two security header extensions:
 - Authentication Header (AH)
 - Connectionless integrity, origin authentication
 - MAC over most header fields and packet body
 - Anti-replay protection
 - Encapsulating Security Payload (ESP)
 - These properties, plus confidentiality

Encapsulating Security Payload (ESP)

- Transport mode: Data encrypted, but not header
 - After all, network headers needed for routing!
 - Can still do traffic analysis, but is efficient
 - Good for host-to-host traffic
- Tunnel mode (“IP-in-IP”)
 - Encrypts entire IP packet
 - Add new header for next hop
 - Good for VPNs, gateway-to-gateway security

Replay Protection is Hard

- Goal: Eavesdropper can’t capture encrypted packet and duplicate later
 - Easy with TLS/HTTP on TCP: Reliable byte stream
 - But IP Sec at packet layer; transport may not be reliable
- IP Sec solution: Sliding window on sequence #’s
 - All IPSec packets have a 64-bit monotonic sequence number
 - Receiver keeps track of which seqno’s seen before
 - \([\text{latest} - \text{windowsize} + 1, \text{latest}]\); \(\text{windowsize} \text{ typically 64 packets}\)
 - Accept packet if
 - seqno > latest (and update latest)
 - Within window but has not been seen before
 - If reliable, could just remember last, and accept iff last + 1

DNS Security
DNS Root Servers

- Labeled A through M

- A Verisign, Dulles, VA
- C Cogent, Herndon, VA (also Los Angeles)
- D U Maryland College Park, MD
- G US DoD Vienna, VA
- H ARL Aberdeen, MD
- J Verisign, 11 locations
- K RIPE London (+ Amsterdam, Frankfurt)
- L ICANN Los Angeles, CA
- M WIDE Tokyo
- E NASA Mt View, CA
- F Internet Software C. Palo Alto, CA (and 17 other locations)
- B USC-ISI Marina del Rey, CA

DoS attacks on DNS Availability

- Feb. 6, 2007
 - Botnet attack on the 13 Internet DNS root servers
 - Lasted 2.5 hours
 - None crashed, but two performed badly:
 - g-root (DoD), l-root (ICANN)
 - Most other root servers use anycast

Denial-of-Service Attacks on Hosts

- ×40 amplification

- 580,000 open resolvers on Internet (Kaminsky-Shiffman’06)

Preventing Amplification Attacks

- Prevent ip spoofing
- Disable open amplifiers
DNS Integrity and the TLD Operators

- If domain name doesn’t exist, DNS should return NXDOMAIN (non-existant domain) msg
- Verisign instead creates wildcard records for all .com and .net names not yet registered
 - September 15 – October 4, 2003
- Redirection for these domain names to Verisign web portal: “to help you search”
 - And serve you ads…and get “sponsored” search
 - Verisign and online advertising companies make $$

DNS Integrity: Cache Poisoning

- Was answer from an authoritative server?
 - Or from somebody else?
- DNS cache poisoning
 - Client asks for www.evil.com
 - Nameserver authoritative for www.evil.com returns additional section for (www.cnn.com, 1.2.3.4, A)
 - Thanks! I won’t bother check what I asked for

DNS Integrity: DNS Hijacking

- To prevent cache poisoning, client remembers:
 - The domain name in the request
 - A 16-bit request ID (used to demux UDP response)
- DNS hijacking
 - 16 bits: 65K possible IDs
 - What rate to enumerate all in 1 sec? 64B/packet
 - $64 \times 65536 \times 8 / 1024 / 1024 = 32$ Mbps
- Prevention: also randomize DNS source port
 - Kaminsky attack: this source port… wasn’t random
 - \url{http://unixwiz.net/techtips/iguide-kaminsky-dns-vuln.html}

Let’s strongly believe the answer! Enter DNSSEC

- DNSSEC protects against data spoofing and corruption
- DNSSEC also provides mechanisms to authenticate servers and requests
- DNSSEC provides mechanisms to establish authenticity and integrity
PK-DNSSEC (Public Key)

- The DNS servers sign the hash of resource record set with its private (signature) keys
 - Public keys can be used to verify the SIGs
- Leverages hierarchy:
 - Authenticity of name server’s public keys is established by a signature over the keys by the parent’s private key
 - In ideal case, only roots’ public keys need to be distributed out-of-band

Conclusions

- Security at many layers
 - Application, transport, and network layers
 - Customized to the properties and requirements
- Exchanging keys
 - Public key certificates
 - Certificate authorities vs. Web of trust
- Next time
 - Interdomain routing security
- Learn more: take COS 432 next year!