
1

Content Distribution
Networks (CDNs)

Mike Freedman
COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr20/cos461/

Continuation of Lec 15

2

HTTP xfer = single object
Web pages = many objects

nytimes.com

2

How to handle many requests?
• Maximize goodput by reusing connections

– Avoid connection (TCP) setup
– Avoid TCP slow-start

• Client-server will maintain existing TCP connection for
up to K idle seconds

5

GET / HTTP/1.1
Host: www.example.com
Connection: Keep-Alive

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive

Three approaches to multiple requests
Persistent

Connections

Conn 1:
• Request 1
• Response 1
• Request 2
• Response 2
• Request 3
• Response 3

Pipelined
Connections

Conn 1:
• Request 1
• Request 2
• Request 3
• Response 1
• Response 2
• Response 3

Parallel
Connections

Conn 1:
• Request 1
• Response 1

Conn 2:
• Request 2

• Response 2

What are challenges with pipelining?

• Head-of-line blocking
– Small xfers can “block” behind large xfer

• No reordering
– HTTP response does not “identify” which request it’s

in response to; obvious in simple request/response

• Can behave worse than parallel + persistent
— Can send expensive query 1 on conn 1, while

sending many cheap queries on conn 2

7

Google’s SPDY -> HTTP/2

• Server “push” for content
• One client request, multiple responses

• After all, server knows that after parsing HTML,
client will immediately request embedded URLs

• Better pipelining and xfer
• Multiplexing multiple xfers w/o HOL blocking

• Request prioritization

• Header compression

https://developers.google.com/web/fundamentals/performance/http2

https://developers.google.com/web/fundamentals/performance/http2

3

Why Web Caching?

11

Single Server, Poor Performance

• Single server
–Single point of failure
–Easily overloaded
–Far from most clients

• Popular content
–Popular site
– “Flash crowd” (aka

“Slashdot effect”)
–Denial of Service attack

12

4

Skewed Popularity of Web Traffic

“Zipf” or “power-law”
distribution

13

Characteristics of WWW Client-based Traces
Carlos R. Cunha, Azer Bestavros, Mark E. Crovella, BU-CS-95-01

Proxy Caches

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

14

Forward Proxy
• Cache “close” to the client
–Under administrative control

of client-side AS

• Explicit proxy
–Requires configuring browser

• Implicit proxy
–Service provider deploys an “on path” proxy
–… that intercepts and handles Web requests

15

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

Reverse Proxy
• Cache “close” to server
–Either by proxy run by server

or in third-party content
distribution network (CDN)

• Directing clients to the proxy
–Map the site name to the

IP address of the proxy

16

Proxy
server

HTTP request

HTTP response

origin
server

origin
server

HTTP requestHTTP response

5

Router Router

Data Centers

. . .
Servers Servers

Client

Reverse
Proxy

Reverse
Proxy

Requests

Client Client

Private
Backbone

Internet

Google Design

17

Proxy Caches
(Y) Forward (M) Reverse (C) Both (A) Neither

• Reactively replicates popular content
• Reduces origin server costs
• Reduces client ISP costs
• Intelligent load balancing between origin servers
• Offload form submissions (POSTs) and user auth
• Content reassembly or transcoding on behalf of origin
• Smaller round-trip times to clients
• Maintain persistent connections to avoid TCP setup

delay (handshake, slow start)
18

Proxy Caches
(Y) Forward (M) Reverse (C) Both (A) Neither

• Reactively replicates popular content
• Reduces origin server costs
• Reduces client ISP costs
• Intelligent load balancing between origin servers
• Offload form submissions (POSTs) and user auth
• Content reassembly or transcoding on behalf of origin
• Smaller round-trip times to clients
• Maintain persistent connections to avoid TCP setup

delay (handshake, slow start) 19

C
C
Y
M
A
C
C
C

Modern HTTP Video-on-Demand
• Download “content manifest” from origin server
• List of video segments belonging to video
– Each segment 1-2 seconds in length
– Client can know time offset associated with each
– Standard naming for different video resolutions and formats:

e.g., 320dpi, 720dpi, 1040dpi, …

• Client downloads video segment (at certain resolution)
using standard HTTP request.
– HTTP request can be satisfied by cache: it’s a static object

• Client observes download time vs. segment duration,
increases/decreases resolution if appropriate 20

6

Content Distribution Networks

21

Content Distribution Network
• Proactive content replication
– Content provider (e.g., CNN)

contracts with a CDN

• CDN replicates the content
– On many servers spread

throughout the Internet

• Updating the replicas
– Reactive by TTL or updates

pushed to replicas when the
content changes

22

origin server
in North America

CDN distribution node

CDN server
in S. America CDN server

in Europe

CDN server
in Asia

Server Selection Policy
• Live server
– For availability

• Lowest load
– To balance load across the servers

• Closest
– Nearest geographically, or in round-trip time

• Best performance
– Throughput, latency, …

• Cheapest bandwidth, electricity, …
23

Requires continuous monitoring of
liveness, load, and performance

Server Selection Mechanism

• Application
– HTTP redirection

• Advantages
– Fine-grain control
– Selection based on

client IP address

• Disadvantages
– Extra round-trips for TCP

connection to server
– Overhead on the server

GET

Redirect

GET

OK

24

7

Server Selection Mechanism

• Routing
– Anycast routing

• Advantages
– No extra round trips
– Route to nearby server

• Disadvantages
– Does not consider

network or server load
– Different packets may

go to different servers
– Used only for simple

request-response apps

1.2.3.0/24

1.2.3.0/24

25

Server Selection Mechanism

• Naming
– DNS-based server

selection

• Advantages
– Avoid TCP set-up delay
– DNS caching reduces

overhead
– Relatively fine control

• Disadvantage
– Based on IP address of

local DNS server
– “Hidden load” effect
– DNS TTL limits adaptation

26

1.2.3.4

1.2.3.5

DNS
query

local DNS server

How Akamai Works

27

Akamai Statistics
• Distributed servers
–Servers: ~275,000
–Networks: 1,500
–Countries: 136

• Many customers
–50% of Fortune

Global 500

• Network
–Up to 50 Tbps daily
–2019 Cricket World

Cup: 25.3M
concurrent viewers
–85% Internet is one

network hop from
Akamai servers

28https://www.akamai.com/us/en/about/facts-figures.jsp

https://www.akamai.com/us/en/about/facts-figures.jsp

8

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS root server

1 2

Nearby
Akamai
cluster

GET
index.
html

29

cache.cnn.com/foo.jpg

HTTP

Akamai
cluster

Akamai global
DNS server

Akamai regional
DNS server

End user

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Nearby
Akamai
cluster

30

DNS lookup
cache.cnn.com

Akamai
cluster

3

4 ALIAS:
g.akamai.net

Akamai global
DNS server

Akamai regional
DNS server

End user

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

31

Akamai
cluster

3

4 6

5

ALIAS
a73.g.akamai.net

DNS lookup
g.akamai.net

End user

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

32

Akamai
cluster

3

4 6

5

8

7

DNS a73.g.akamai.net

Address
1.2.3.4

End user

9

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

33

Akamai
cluster

3

4 6

5

8

7

9

GET /foo.jpg
Host: cache.cnn.com

End user

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

34

Akamai
cluster

3

4 6

5

8

7

9

GET /foo.jpg
Host: cache.cnn.com

12
11

GET foo.jpg

End user

HTTP

How Akamai Uses DNS
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

35

Akamai
cluster

3

4 6

5

8

7

9

12
11

10
End user

HTTP

How Akamai Works: Cache Hit
cnn.com (content provider) DNS TLD server

1 2

Akamai global
DNS server

Akamai regional
DNS server

Nearby
Akamai
cluster

36

Akamai
cluster

4

3

5

6
End user

10

Mapping System
• Equivalence classes of IP addresses
– IP addresses experiencing similar performance
– Quantify how well they connect to each other

• Collect and combine measurements
– Ping, traceroute, BGP routes, server logs

• E.g., over 100 TB of logs per days
– Network latency, loss, and connectivity

37

Routing Client Requests within Map
• Map each IP class to a preferred server cluster
– Based on performance, cluster health, etc.
– Updated roughly every minute

• Short, 60-sec DNS TTLs in Akamai regional DNS
accomplish this

• Map client request to a server in the cluster
– Load balancer selects a specific server
– E.g., to maximize the cache hit rate

38

Selecting server inside cluster
• “Consistent hashing”
– content_key = hash(URL) mod N
– node_key = hash(server ID) mod N

– Content belongs to server’s node_key is “closest” to
URL’s content_key

39CK80

N32

N90

N105 CK20

CK5

Circular
ID space

Content 5

Server 105

Adapting to Failures
• Failing hard drive on a server
– Suspends after finishing “in progress” requests

• Failed server
– Another server takes over for the IP address
– Low-level map updated quickly

• Failed cluster or network path
– High-level map updated quickly

• Failed path to customer’s origin server
– Route packets through an intermediate node

40

11

Akamai Transport Optimizations
• Bad Internet routes
– Overlay routing through an intermediate server

• Packet loss
– Sending redundant data over multiple paths

• TCP connection set-up/teardown
– Pools of persistent connections

• TCP congestion window and round-trip time
– Estimates based on network latency measurements

41

Akamai Application Optimizations
• Slow download of embedded objects
– Prefetch when HTML page is requested

• Large objects
– Content compression

• Slow applications
– Moving applications to edge servers
– E.g., content aggregation and transformation
– E.g., static databases (e.g., product catalogs)

42

Conclusion
• Content distribution is hard
– Many, diverse, changing objects
– Clients distributed all over the world

• Moving content towards client is key
– Reduces latency, improves throughput, reliability

• Contribution distribution solutions evolved
– Reactive caching, load balancing, to
– Proactive content distribution networks

43

