
4/1/20

1

HTTP and the Web
Mike Freedman

https://www.cs.princeton.edu/courses/archive/spr20/cos461/

1

Two Forms of Header Formats
• Fixed: Every field (type, length) defined
– Fast parsing (good for hardware implementations)
– Not human readable
– Fairly static (IPv6 ~20 years to deploy)
– E.g., Ethernet, IP, TCP headers

• Variable length headers
– Slower parsing (hard to implement in hardware)
– Human readable
– Extensible
– E.g., HTTP (Web), SMTP (Email), XML

2

HTTP Basics (Overview)
• HTTP over bidirectional byte stream (e.g. TCP)
• Interaction
– Client looks up host (DNS)
– Client sends request to server
– Server responds with data or error
– Requests/responses are encoded in text

• Stateless
– HTTP maintains no info about past client requests
– HTTP “Cookies” allow server to identify client and

associate requests into a client session
3

HTTP Response

4

“cr” is \r
“lf” is \n

4/1/20

2

HTTP Request
• Request line
– Method

• GET – return URI
• HEAD – return headers only of GET response
• POST – send data to the server (forms, etc.)

– URL (relative)
• E.g., /index.html

– HTTP version

5

HTTP Request (cont.)
• Request headers
– Variable length, human-readable
– Uses:

• Authorization – authentication info
• Acceptable document types/encodings
• From – user email
• If-Modified-Since
• Referrer – what caused this page to be requested
• User-Agent – client software

• Blank-line
• Body

6

HTTP Request Example

GET /index.html HTTP/1.1
Host: www.example.com
Accept-Language: en-us
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)
Connection: Keep-Alive

7

HTTP Response
• Status-line
– HTTP version (now “1.1”)
– 3 digit response code
• 1XX – informational
• 2XX – success

– 200 OK
• 3XX – redirection

– 301 Moved Permanently
– 303 Moved Temporarily
– 304 Not Modified

• 4XX – client error
– 404 Not Found

• 5XX – server error
– 505 HTTP Version Not Supported

– Reason phrase 8

4/1/20

3

HTTP Response (cont.)
• Headers

– Variable length, human-readable
– Uses:

• Location – for redirection
• Server – server software
• WWW-Authenticate – request for authentication
• Allow – list of methods supported (get, head, etc)
• Content-Encoding – E.g x-gzip
• Content-Length
• Content-Type
• Expires (caching)
• Last-Modified (caching)

• Blank-line
• Body

9

HTTP Response Example
HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:49:38 GMT
Server: Apache/1.3.14 (Unix) (Red-Hat/Linux) mod_ssl/2.7.1

OpenSSL/0.9.5a DAV/1.0.2 PHP/4.0.1pl2 mod_perl/1.24
Last-Modified: Mon, 29 Jan 2001 17:54:18 GMT
Accept-Ranges: bytes
Content-Length: 4333
Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Content-Type: text/html
…..

10

How to Mark End of Message?
• Close connection
– Only server can do this
– One request per TCP connection. Hurts performance.

• Content-Length
– Must know size of transfer in advance

• No body content. Double CRLF marks end
– E.g., 304 never have body content

• Transfer-Encoding: chunked (HTTP/1.1)
– After headers, each chunk is content length in hex, CRLF,

then body. Final chunk is length 0.
11

Example: Chunked Encoding
HTTP/1.1 200 OK <CRLF>

Transfer-Encoding: chunked <CRLF>
<CRLF>
25 <CRLF>
This is the data in the first chunk <CRLF>
1A <CRLF>

and this is the second one <CRLF>
0 <CRLF>

• Especially useful for dynamically-generated content, as
length is not a priori known
– Server would otherwise need to cache data until done generating,

and then go back and fill-in length header before transmitting 12

4/1/20

4

Proxies

Proxies
• End host that acts a broker between client and server

– Speaks to server on client’s behalf

• Why?
– Privacy
– Content filtering
– Caching!!!

14

Proxies (Cont.)

• Accept requests from
multiple clients

• Takes request and
reissues it to server

• Takes response and
forwards to client

15

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

origin
server

HTTP Caching
• Why cache?
–Lot of objects don’t change (images, js, css)
–Reduce # of client connections
–Reduce server load
–Reduce overall network traffic; save $$$

16

4/1/20

5

Caching is Hard
• Significant fraction (>50%?) of distinct HTTP objects may

be uncacheable
– Dynamic data: Stock prices, scores, web cams
– CGI scripts: results based on passed parameters
– Cookies: results may be based on passed data
– SSL: encrypted data is not cacheable
– Advertising / analytics: owner wants to measure # hits

• Random strings in content to ensure unique counting

• Yet significant fraction of HTTP bytes are cacheable
• Images, video, CSS pages, etc.

• Want to limit staleness of cached objects
17

How long should the client cache for?

• Clients (and proxies) cache documents

– When should origin be checked for changes?

– Every time? Every session? Date?

• HTTP includes caching information in headers

– HTTP 0.9/1.0 used: “Expires: <date>”; “Pragma: no-cache”

– HTTP/1.1 has “Cache-Control”

– “No-Cache”, “Max-age: <seconds>”

– “ETag: <opaque value>

18

Why the changes between 1.0 and 1.1?

• Timestamps
– Server hints when an object “Expires” (Expires: xxx)
– Server provides last modified date, client can check if

that’s still valid

• Problems
– Client and server might not have synchronized clocks
– Server replicas might not have synchronized clocks
– Max-age solves this: relative seconds, not abs time

19

What if cache expires?

GET / HTTP/1.1
Accept-Language: en-us
If-Modified-Since: Mon, 29 Jan 2001 17:54:18 GMT
Host: www.example.com
Connection: Keep-Alive

20

• Store past expiry time (if room in cache)
• Upon request, first revalidate with server

HTTP/1.1 304 Not Modified
Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive

4/1/20

6

Another problem!

GET / HTTP/1.1
Accept-Language: en-us
If-None-Match: "686897696a7c876b7e”
Host: www.example.com
Connection: Keep-Alive

21

• What if server replicas don’t have aligned
modification times?

HTTP/1.1 200
Date: Tue, 27 Mar 2001 03:50:51 GMT
ETag: 686897696a7c876b7e

HTTP xfer = single object
Web pages = many objects

nytimes.com How to handle many requests?
• Maximize goodput by reusing connections
– Avoid connection (TCP) setup
– Avoid TCP slow-start

• Client-server will maintain existing TCP connection for
up to K idle seconds

24

GET / HTTP/1.1
Host: www.example.com
Connection: Keep-Alive

HTTP/1.1 200 OK
Date: Tue, 27 Mar 2001 03:50:51 GMT
Connection: Keep-Alive

4/1/20

7

Three approaches to multiple requests
Persistent

Connections

Conn 1:
• Request 1
• Response 1
• Request 2
• Response 2
• Request 3
• Response 3

Pipelined
Connections

Conn 1:
• Request 1
• Request 2
• Request 3
• Response 1
• Response 2
• Response 3

Parallel
Connections

Conn 1:
• Request 1
• Response 1

Conn 2:
• Request 2
• Response 2

What are challenges with pipelining?

• Head-of-line blocking
– Small xfers can “block” behind large xfer

• No reordering
– HTTP response does not “identify” which request it’s

in response to; obvious in simple request/response

• Can behave worse than parallel + persistent
— Can send expensive query 1 on conn 1, while

sending many cheap queries on conn 2

26

Google’s SPDY -> HTTP/2

• Server “push” for content
• One client request, multiple responses

• After all, server knows that after parsing HTML,
client will immediately request embedded URLs

• Better pipelining and xfer
• Multiplexing multiple xfers w/o HOL blocking

• Request prioritization

• Header compression

https://developers.google.com/web/fundamentals/performance/http2

https://developers.google.com/web/fundamentals/performance/http2

4/1/20

8

