

#### **Interdomain Routing**

Mike Freedman COS 461: Computer Networks

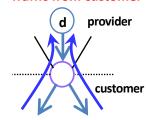
http://www.cs.princeton.edu/courses/archive/spr20/cos461/

AS (Autonomous System)
Business Relationships

### How to avoid BGP Instability

- Detecting conflicting policies
  - CON: Computationally expensive
  - CON: Requires too much cooperation
- Detecting oscillations
  - Observing the repetitive BGP routing messages
  - CON: Requires dynamic, stateful analysis
- Restricted routing policies and topologies
  - Policies based on business relationships

2


#### Customer-Provider Relationship

- Customer pays provider for access to Internet
  - Provider exports its customer routes to everybody
  - Customer exports provider routes only to its customers

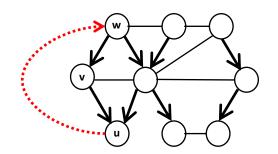
#### **Traffic to customer**

# advertisements provider traffic d customer

#### **Traffic from customer**



#### Peer-Peer Relationship


- Peers exchange traffic between their customers
  - AS exports only customer routes to a peer
  - AS exports a peer's routes only to its customers

#### Traffic to/from the peer and its customers



#### **Hierarchical AS Relationships**

- Provider-customer graph is directed and acyclic
  - If u is a customer of v and v is a customer of w
  - ... then w is not a customer of u



## Valid and Invalid Paths

Path 1 2 d
Path 7 d
Path 5 8 d
Path 6 4 3 d
Path 8 5 d
Path 6 5 d
Path 1 4 3 d

Provider-Customer
Peer-Peer

Peer-Peer

7

Valid and Invalid Paths Path 12d Valid Y) Valid M) Invalid Valid Path 7 d Path 58d Invalid Path 6 4 3 d Valid Path 85 d Valid Path 6 5 d Invalid Path 143 d Invalid Provider-Customer Peer-Peer

## Local Control, Global Stability: "Gao-Rexford Conditions"

#### 1. Route export

 Don't export routes learned from a peer or provider to another peer or provider

#### 2. Global topology

- Provider-customer relationship graph is acyclic
- E.g., my customer's customer is not my provider

#### 3. Route selection

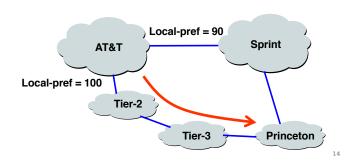
 Prefer routes through customers over routes through peers and providers

Guaranteed to converge to unique, stable solution

11

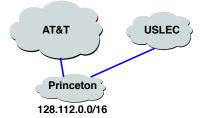
# How do we implement Interdomain Routing Policy?

12


#### Selecting a Best Path

- Routing Information Base
  - Store all BGP routes for each destination prefix
  - Withdrawal: remove the route entry
  - Announcement: update the route entry
- BGP decision process
  - Highest local preference
  - Shortest AS path
  - Closest egress point
  - Arbitrary tie break

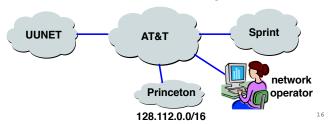
3


#### Import Policy: Local Preference

- Favor one path over another
  - Override the influence of AS path length
- Example: prefer customer over peer

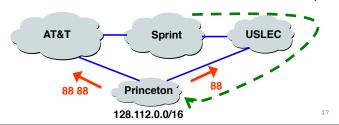


#### Import Policy: Filtering


- Discard some route announcements
  - Detect configuration mistakes and attacks
- Examples on session to a customer
  - Discard route if prefix not owned by the customer
  - Discard route with other large ISP in the AS path

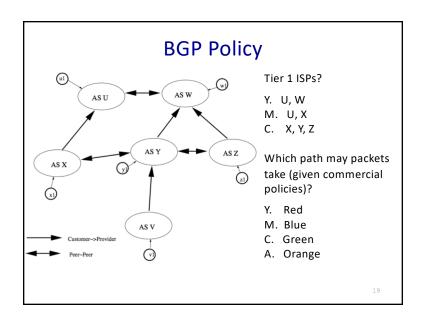


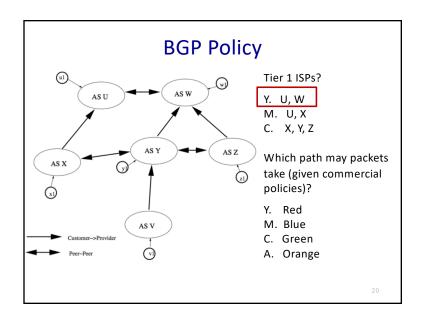
15

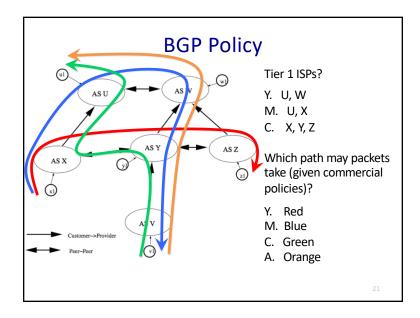

#### **Export Policy: Filtering**

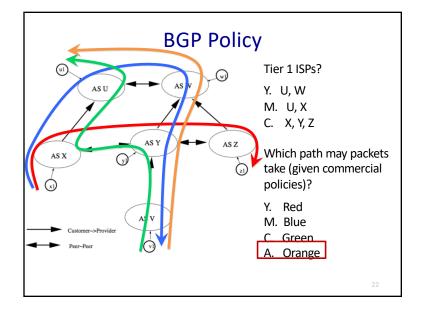
- Discard some route announcements
  - Limit propagation of routing information
- Examples
  - Don't announce routes from one peer to another
  - Don't announce routes for management hosts




#### **Export Policy: Attribute Manipulation**


- Modify attributes of the active route
  - To influence the way other ASes behave
- Example: AS prepending
  - Artificially inflate AS path length seen by others
  - Convince some ASes to send traffic another way





#### Reflect Business Relationships

- Common relationships
  - Customer-provider
  - Peer-peer
  - Backup, sibling, ...
- ISP terminology:
  - Tier-1 (~15 worldwide): No settlement or transit
  - Tier-2 ISPs: Widespread peering, still buy transit
- Policies implementing in BGP, e.g.,
  - Import: Ranking customer routes over peer routes
  - Export: Export only customer routes to peers and providers





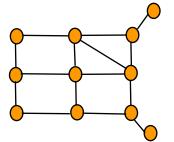


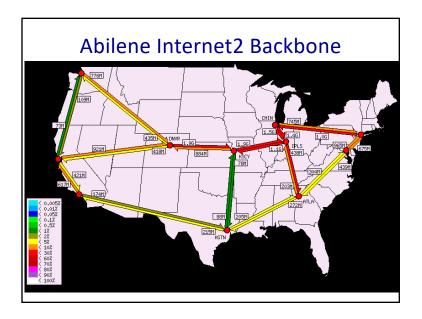


#### **BGP Policy Configuration**

- Routing policy languages are vendor-specific
  - Not part of the BGP protocol specification
  - Different languages for Cisco, Juniper, etc.
- Still, all languages have some key features
  - List of clauses matching on route attributes
  - ... and discarding or modifying the matching routes
- Configuration done by human operators
  - Implementing the policies of their AS
  - Business relationships, traffic engineering, security

23


#### How do backbone AS operate?

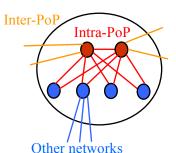

**Backbone Topology** 

24

#### **Backbone Networks**

- Backbone networks
  - Multiple Points-of-Presence (PoPs)
  - Lots of communication between PoPs
  - Accommodate traffic demands and limit delay





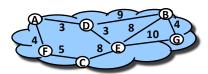

#### Points-of-Presence (PoPs)

- Inter-PoP links
  - Long distances
  - High bandwidth
- Intra-PoP links
  - Short cables between racks or floors
  - Aggregated bandwidth



- Wide range of media and bandwidth



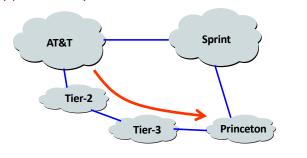

#### Peering **Customer B** Exchange traffic between customers Settlement-free Diverse peering multiple peering locations points - Both coasts, and middle Comparable capacity at all peering points - Can handle even load **Customer A**

#### Where to Locate Nodes and Links

- Placing Points-of-Presence (PoPs)
  - Large population of potential customers
  - Other providers or exchange points
  - Cost and availability of real-estate
  - Mostly in major metropolitan areas ("NFL cities")
- Placing links between PoPs
  - Already fiber in the ground
  - Needed to limit propagation delay
  - Needed to handle the traffic load

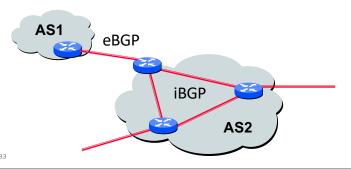
### Combining Intradomain and **Interdomain Routing**

#### **Intradomain Routing**



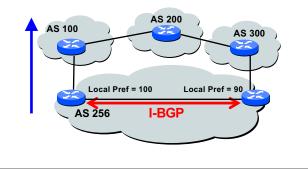

- Compute shortest paths between routers
  - Router C takes path C-F-A to router A
- Using link-state routing protocols
  - E.g., OSPF, IS-IS

31


#### **Interdomain Routing**

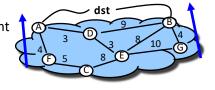
- Learn paths to remote destinations
  - AT&T learns two paths to Yale
- Applies local policies to select a best route



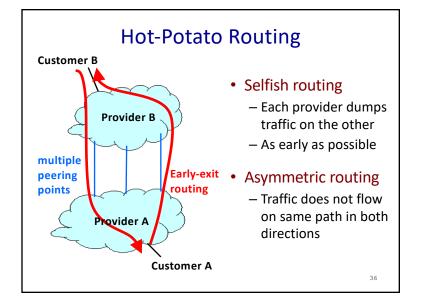

#### An AS is Not a Single Node

- Multiple routers in an AS
  - Need to distribute BGP information within the AS
  - Internal BGP (iBGP) sessions between routers




#### Internal BGP and Local Preference

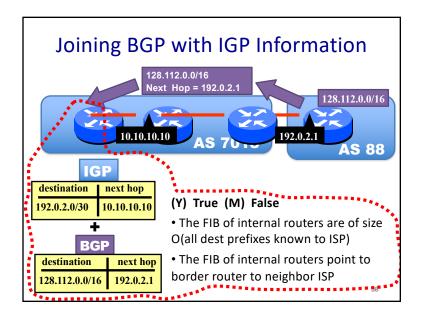
- Both routers prefer path through AS 100
- ... even though right router learns external path

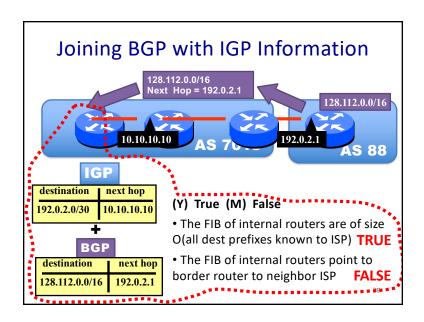


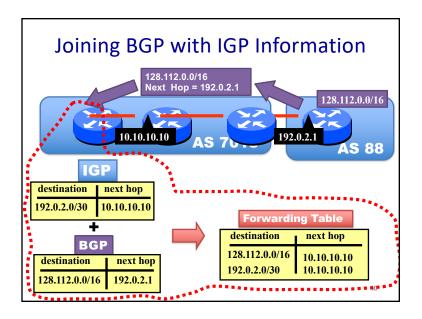

## Hot-Potato (Early-Exit) Routing

- Hot-potato routing
  - Each router selects the closest egress point
  - ... based on the path cost in intradomain protocol
- BGP decision process
  - Highest local preference
  - Shortest AS path
  - Closest egress point
  - Arbitrary tie break




35



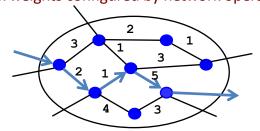


#### Joining BGP and IGP Information

- Border Gateway Protocol (BGP)
  - Announces reachability to external destinations
  - Maps a destination prefix to an egress point
    - 128.112.0.0/16 reached via 192.0.2.1
- Interior Gateway Protocol (IGP)
  - Used to compute paths within the AS
  - Maps an egress point to an outgoing link
    - 192.0.2.1 reached via 10.10.10.10







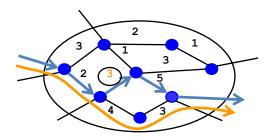



**Backbone Traffic Engineering** 

41

#### Routing With "Static" Link Weights

- Routers flood information to learn topology
  - Determine "next hop" to reach other routers...
  - Compute shortest paths based on link weights
- Link weights configured by network operator




#### Setting the Link Weights

How to set the weights

43

- Inversely proportional to link capacity?
- Proportional to propagation delay?
- Network-wide optimization based on traffic?



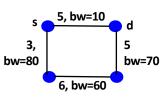
Measure, Model, and Control

Network-wide
"what if" model

Topology/
Configuration

Operational network

Changes to the network


control

#### **Limitations of Shortest-Path Routing**

- · Sub-optimal traffic engineering
  - Restricted to paths expressible as link weights
- Limited use of multiple paths
  - Only equal-cost multi-path, with even splitting
- · Disruptions when changing the link weights
  - Transient packet loss and delay, and out-of-order
- Slow adaptation to congestion
  - Network-wide re-optimization and configuration
- Overhead of the management system

#### **Constrained Shortest Path First**

- Run a link-state routing protocol
  - Configurable link weights
  - Plus other metrics like available bandwidth
- · Constrained shortest-path computation
  - Prune unwanted links(e.g., not enough bw)
  - Compute shortest path on the remaining graph



#### **Conclusions**

#### Interdomain routing

- Business relationships reflected in interdomain routing, leads to more stable paths
- Peering and transit key ideas between providers, peers, and customer AS

#### Backbone networks

- Transit service for customers
- Combine inter and intradomain routing
- Glue that holds the Internet together