

Routing Convergence

Mike Freedman

COS 461: Computer Networks
http://www.cs.princeton.edu/courses/archive/spr20/cos461/
\qquad ,

- Topology changes: new route to the same place
- Host mobility: route to a different place

Two Types of Topology Changes

- Planned
- Maintenance: shut down a node or link
- Energy savings: shut down a node or link
- Traffic engineering: change routing configuration
- Unplanned Failures
- Fiber cut,
faulty equipment, power outage, software bugs, ...

Detecting Topology Changes

- Beaconing
- Periodic "hello" messages in both directions
- Detect a failure after a few missed "hellos"

- Performance trade-offs
- Detection delay
- Overhead on link bandwidth and CPU
- Likelihood of false detection

Routing Convergence:
 Link-State Routing

Convergence

- Control plane
- All nodes have consistent information
- Data plane
- All nodes forward packets in a consistent way

Transient Disruptions

- Detection delay
- A node does not detect a failed link immediately
- ... and forwards data packets into a "blackhole"
- Depends on timeout for detecting lost hellos

Transient Disruptions

- Inconsistent link-state database
- Some routers know about failure before others
- Inconsistent paths cause transient forwarding loops

Convergence Delay

- Sources of convergence delay
- Detection latency
- Updating control-plane information
- Computing and install new forwarding tables
- Performance during convergence period
- Lost packets due to blackholes and TTL expiry
- Looping packets consuming resources
- Out-of-order packets reaching the destination
- Very bad for VoIP, online gaming, and video

Distance Vector: Link Cost Changes

- Link cost decreases and recovery
- Node updates the distance table

- If cost change in least cost path, notify neighbors

Distance Vector: Link Cost Changes

- Link cost decreases and recovery
- Node updates the distance table

- If cost change in least cost path, notify neighbors

$$
\begin{aligned}
& \begin{array}{l|ll|l}
\mathrm{D}^{Y} & x^{\text {via }} z \\
\hline x & 4 & 6
\end{array} \quad \begin{array}{l}
D^{Y} \\
\hline
\end{array} \\
& \begin{array}{c|c|c|c}
D^{Z} & X^{\text {via }} r \\
\hline X & 50(5)
\end{array} \quad \begin{array}{c}
D^{Z} \\
\hline
\end{array} \\
& \text { time } \begin{array}{c}
c(X, Y) \\
\text { change }
\end{array} \\
& D^{\mathrm{Y}}=\text { Distances known to } \mathrm{Y} \\
& \begin{array}{llll}
\mathbf{t}_{0} & \mathbf{t}_{1} & \mathbf{t}_{2} & 14
\end{array}
\end{aligned}
$$

Distance Vector: Link Cost Changes

- Link cost increases and failures
- Bad news travels slowly
- "Count to infinity" problem!

D^{2}	$X^{\text {via }} Y$		
X	$50(5)$	D^{2}	$X \quad Y$
	x	$50(5)$	

time
chang

Distance Vector: Link Cost Changes

- Link cost decreases and recovery
- Node updates the distance table

- If cost change in least cost path, notify neighbors

Distance Vector: Link Cost Changes

- Link cost increases and failures
- Bad news travels slowly
- "Count to infinity" problem!

Distance Vector: Poison Reverse

- If Z routes through Y to get to X :
$-Z$ tells Y its (Z 's) distance to X is infinite (so Y won't route to X via Z)

Redefining Infinity

- Avoid "counting to infinity"
- By making "infinity" smaller!
- Routing Information Protocol (RIP)
- All links have cost 1
- Valid path distances of 1 through 15
- ... with 16 representing infinity
- Used mainly in small networks

1. A and B use $A C D$ and $B C D$, so A and B both poison to C
2. But when CD withdrawn (cost goes to infinity), B switches to BACD, so BC no longer poisoned to C
3. C then starts using CBACD. Loop

> Reducing Convergence Time With Path-Vector Routing (e.g., Border Gateway Protocol)

Path-Vector Routing

- Extension of distance-vector routing
- Support flexible routing policies
- Avoid count-to-infinity problem
- Key idea: advertise the entire path
- Distance vector: send distance metric per dest d
- Path vector: send the entire path for each dest d

Faster Loop Detection

- Node can easily detect a loop
- Look for its own node identifier in the path
- E.g., node 1 sees itself in the path " $3,2,1$ "
- Node can simply discard paths with loops
- E.g., node 1 simply discards the advertisement

BGP Session Failure

- BGP runs over TCP
- BGP only sends updates when changes occur
- TCP doesn't detect lost connectivity on its own
- Detecting a failure
- Keep-alive: 60 seconds
- Hold timer: 180 seconds
- Reacting to a failure
- Discard all routes learned from neighbor
- Send new updates for any routes that change

Routing Change: Before and After

Routing Change: Path Exploration

- AS 1
- Delete the route (1,0)
- Switch to next route (1,2,0)
- Send route $(1,2,0)$ to AS 3
- AS 3
- Sees $(1,2,0)$ replace $(1,0)$
- Compares to route $(2,0)$
- Switches to using AS 2

BGP Converges Slowly

- Path vector avoids count-to-infinity
- But, ASes still must explore many alternate paths to find highest-ranked available path
- Fortunately, in practice
- Most popular destinations have stable BGP routes
- Most instability lies in a few unpopular destinations
- Still, lower BGP convergence delay is a goal
- Can be tens of seconds to tens of minutes

Routing Change: Path Exploration

$\begin{array}{lcc}\text { - Initial: All AS use direct } & (1,0) & (2,0) \\ \text { - Then destination } 0 \text { dies } & (1,2,0) & (2,1,0) \\ \text { - } & (2,3,0) & (2,3,0)\end{array}$
$(1,3,0)$

- All ASes lose direct path
- All switch to longer paths
- Eventually withdrawn
- How many intermediate routes following $(2,0)$ withdrawal until no route known to 2 ?

BGP Instability

Stable Paths Problem (SPP) Instance

- Node
- BGP-speaking router
- Node 0 is destination
- Edge
- BGP adjacency
- Permitted paths
- Set of routes to 0 at each node

30

Stable Paths Problem (SPP) Instance

- 1 will use a direct path to 0 (Y) True (M) False
- 5 has a path to 0 (Y) True (M) False

Stable Paths Problem (SPP) Instance

- 1 will use a direct path to 0
(Y) True (M) False
- 5 has a path to 0
(Y) True (M) False

33

An SPP May Have No Solution

Avoiding BGP Instability

- Detecting conflicting policies
- Computationally expensive
- Requires too much cooperation
- Detecting oscillations
- Observing the repetitive BGP routing messages
- Restricted routing policies and topologies
- Policies based on business relationships

Conclusion

- The only constant is change
- Planned topology and configuration changes
- Unplanned failure and recovery
- Routing-protocol convergence
- Transient period of disagreement
- Blackholes, loops, and out-of-order packets
- Routing instability
- Permanent conflicts in routing policy
- Leading to bi-stability or oscillation

Link State: Shortest-Path Tree

Find shortest path t to v

- Forwarding table entry at t
$z \quad(Y)(t, x) \quad(M)(t, s)$
- Distance from t to v
$\begin{array}{llll}\text { (Y) } 6 & \text { (M) } 7 & \text { (C) } 8 & \text { (A) } 9\end{array}$
- Rounds to find shortest path

(Y) 5	(M) 6	(C) 7	(A) 8

Rounds: Add s (distance 2), w (distance 3), x (distance 4), z (distance 5), equi-distance to u or y (distance 6) So could be 5 (via y) or 6 (via u then y)

Multiplicative Increase/Decrease

