

Two Types of Topology Changes

• Planned

- Maintenance: shut down a node or link
- Energy savings: shut down a node or link
- Traffic engineering: change routing configuration

• Unplanned Failures

Routing Convergence: Link-State Routing

Convergence

• Control plane

- All nodes have consistent information

• Data plane

- All nodes forward packets in a consistent way

7

Transient Disruptions

• Detection delay

- A node does not detect a failed link immediately
- \hdots and forwards data packets into a "blackhole"
- Depends on timeout for detecting lost hellos

6

Redefining Infinity

- Avoid "counting to infinity"
 - By making "infinity" smaller!
- Routing Information Protocol (RIP)
 - All links have cost 1
 - Valid path distances of 1 through 15

20

- ... with 16 representing infinity
- Used mainly in small networks

Reducing Convergence Time With Path-Vector Routing (e.g., Border Gateway Protocol)

BGP Converges Slowly

- Path vector avoids count-to-infinity
 - But, ASes still must explore many alternate paths to find highest-ranked available path
- Fortunately, in practice
 - Most popular destinations have stable BGP routes
 - Most instability lies in a few unpopular destinations
- Still, lower BGP convergence delay is a goal
 - Can be tens of seconds to tens of minutes

28

