
1

Congestion Control
Michael Freedman

COS 461: Computer Networks

http://www.cs.princeton.edu/courses/archive/spr20/cos461/

Congestion Control

Distributed Resource Sharing

Congestion
• Best-effort network does not “block” calls
– So, they can easily become overloaded
– Congestion == “Load higher than capacity”

• Examples of congestion
– Link layer: Ethernet frame collisions
– Network layer: full IP packet buffers

• Excess packets are simply dropped
– And the sender can simply retransmit

queue

3

Congestion Collapse
• Easily leads to congestion collapse
– Senders retransmit the lost packets
– Leading to even greater load
– … and even more packet loss

Load

Goodput
“congestion

collapse”
Increase in load that
results in a decrease
in useful work done.

4

2

Detect and Respond to Congestion

• What does the end host see?
• What can the end host change?

5

?

Detecting Congestion
• Link layer
–Carrier sense multiple access
–Seeing your own frame collide with others

• Network layer
–Observing end-to-end performance
–Packet delay or loss over the path

6

Responding to Congestion
• Upon detecting congestion
– Decrease the sending rate

• But, what if conditions change?
– If more bandwidth becomes available,
– … unfortunate to keep sending at a low rate

• Upon not detecting congestion
– Increase sending rate, a little at a time
– See if packets get through

7

TCP seeks ”Fairness”

3

9

Phase Plots

Fairness
Line

x1 = x2

User 1�s Allocation x1

User 2�s
Allocation x2

10

Phase Plots

User 1�s Allocation x1

User 2�s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

11

Phase Plots

User 1�s Allocation x1

User 2�s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

12

Phase Plots

User 1�s Allocation x1

User 2�s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

4

13

Phase Plots

User 1�s Allocation x1

User 2�s
Allocation x2

Overload

Under
utilization

Fairness
Line

x1 = x2

Max
Throughput

14

Phase Plots

Efficiency
Line

User 1�s Allocation x1

User 2�s
Allocation x2

Optimal
point

Overload

Under
utilization

Fairness
Line

x1 = x2

15

Additive Increase/Decrease

Efficiency
Line

User 1�s Allocation x1

User 2�s
Allocation x2

Fairness
Line

x1 = x2AIAD

16

Multiplicative Increase/Decrease

Efficiency
Line

User 1�s Allocation x1

User 2�s
Allocation x2

Fairness
Line

x1 = x2
MIMD

5

17

Additive Increase / Multiplicative Decrease

Efficiency
Line

User 1�s Allocation x1

User 2�s
Allocation x2

Fairness
Line

x1 = x2
AIMD

TCP Congestion Control
• Additive increase, multiplicative decrease
– On packet loss, divide congestion window in half
– On success for last window, increase window linearly

Window

halved

Loss

18

Time

Why Multiplicative?
• Respond aggressively to bad news
– Congestion is (very) bad for everyone
– Need to react aggressively

Examples of exponential backoff:
– TCP: divide sending rate in half
– Ethernet: double retransmission timer

• Nice theoretical properties
– Makes efficient use of network resources

19

TCP Congestion Control

20

6

Congestion in a Drop-Tail FIFO Queue
• Access to the bandwidth: first-in first-out queue
– Packets transmitted in the order they arrive

21

�

• Access to the buffer space: drop-tail queuing
– If the queue is full, drop the incoming packet

How it Looks to the End Host
• Delay: Packet experiences high delay
• Loss: Packet gets dropped along path

• How does TCP sender learn this?
– Delay: Round-trip time estimate
– Loss: Timeout and/or duplicate acknowledgments

�

TCP Congestion Window

• Each TCP sender maintains a congestion window
– Max number of bytes to have in transit (not yet ACK’d)

• Adapting the congestion window
– Decrease upon losing a packet: backing off
– Increase upon success: optimistically exploring

– Always struggling to find right transfer rate

• Tradeoff
– Pro: avoids needing explicit network feedback
– Con: continually under- and over-shoots “right” rate

23

Additive Increase, Multiplicative Decrease

• How much to adapt?

– Additive increase: On success of last window of

data, increase window by 1 Max Segment Size (MSS)

– Multiplicative decrease: On loss of packet, divide

congestion window in half

• Much quicker to slow down than speed up?

– Over-sized windows (causing loss) are much worse

than under-sized windows (causing lower thruput)

– AIMD: A necessary condition for stability of TCP

24

7

Leads to the TCP “Sawtooth”

25

Window

halved

Loss

Time

Receiver Window vs. Congestion Window

• Flow control
– Keep a fast sender from overwhelming a slow receiver

• Congestion control
– Keep a set of senders from overloading the network

• Different concepts, but similar mechanisms
– TCP flow control: receiver window
– TCP congestion control: congestion window
– Sender TCP window =

min { congestion window, receiver window }

26

Sources of poor TCP performance
• The below conditions may primarily result in:
(Y) Higher pkt latency (M) Greater loss (C) Lower thruput

1. Larger buffers in routers

2. Smaller buffers in routers

3. Smaller buffers on end-hosts

4. Slow application receivers

27

Sources of poor TCP performance
• The below conditions may primarily result in:
(Y) Higher pkt latency (M) Greater loss (C) Lower thruput

1. Larger buffers in routers

2. Smaller buffers in routers

3. Smaller buffers on end-hosts

4. Slow application receivers

28

(Y) Higher latency

(M) Greater Loss

(C) Lower Throughput

(C) Lower Throughput

8

Starting a New Flow

29

How Should a New Flow Start?

30

Time

Window

halved

Loss

But, could take a long
time to get started!

Start slow (a small CWND) to avoid overloading network

“Slow Start” Phase
• Start with a small congestion window
– Initially, CWND is 1 MSS
– So, initial sending rate is MSS / RTT

• Could be pretty wasteful
– Might be much less than actual bandwidth
– Linear increase takes a long time to accelerate

• Slow-start phase (really “fast start”)
– Sender starts at a slow rate (hence the name)
– … but increases rate exponentially until the first loss

31

Slow Start in Action

32

Double CWND per round-trip time

D A D D A A D D

A A

D

A

Src

Dest

D

A

1 2 4 8

9

Slow Start and the TCP Sawtooth

• TCP originally had no congestion control
– Source would start by sending entire receiver window
– Led to congestion collapse!
– “Slow start” is, comparatively, slower

33

Window

halved

Loss

Exponential “slow start” Time

Two Kinds of Loss in TCP

• Timeout vs. Triple Duplicate ACK
– Which suggests network is in worse shape?

• Timeout
– If entire window was lost, buffers may be full

– ...blasting entire CWND would cause another burst

– ...be aggressive: start over with a low CWND

• Triple duplicate ACK
– Might be do to bit errors, or “micro” congestion

– ...react less aggressively (halve CWND)
34

Repeating Slow Start After Timeout

35

t

Window
timeout

Repeating Slow Start After Timeout

36

t

Window

Slow-start restart: Go back to CWND of 1, but take
advantage of knowing the previous value of CWND.

Slow start until
reaching half of
previous cwnd.

timeout

10

Repeating Slow Start After Idle Period
• Suppose a TCP connection goes idle for a while

• Eventually, the network conditions change
– Maybe many more flows are traversing the link

• Dangerous to start transmitting at the old rate
– Previously-idle TCP sender might blast network
– … causing excessive congestion and packet loss

• So, some TCP implementations repeat slow start
– Slow-start restart after an idle period

37

TCP Problem
• 1 MSS = 1KB
• Max capacity of link: 200 KBps
• RTT = 100ms
• New TCP flow starting, no other traffic in network,

assume no queues in network

1. About what is cwnd at time of first packet loss?
(Y) 16 pkts (M) 32 KB (C) 100 KB (A) 200 KB

2. About how long until sender discovers first loss?
(Y) 400 ms (M) 600 ms (C) 1s (A) 1.6s

38

TCP Problem
• 1 MSS = 1KB
• Max capacity of link: 200 KBps
• RTT = 100ms
• New TCP flow starting, no other traffic in network,

assume no queues in network

1. About what is cwnd at time of first packet loss?
(Y) 16 pkts (M) 32 KB (C) 100 KB (A) 200 KB

2. About how long until sender discovers first loss?
(Y) 400 ms (M) 600 ms (C) 1s (A) 1.6s

39

Fairness

40

11

TCP Achieves a Notion of Fairness
• Effective utilization is not only goal
– We also want to be fair to various flows

• Simple definition: equal bandwidth shares
– N flows that each get 1/N of the bandwidth?

• But, what if flows traverse different paths?
– Result: bandwidth shared in proportion to RTT

41

What About Cheating?
• Some folks are more fair than others
– Using multiple TCP connections in parallel (BitTorrent)
– Modifying the TCP implementation in the OS
• Some cloud services start TCP at > 1 MSS

– Use the User Datagram Protocol

• What is the impact
– Good guys slow down to make room for you
– You get an unfair share of the bandwidth

42

Preventing Cheating
• Possible solutions?
– Routers detect cheating and drop excess packets?
– Per user/customer failness?
– Peer pressure?

43

Conclusions
• Congestion is inevitable
– Internet does not reserve resources in advance
– TCP actively tries to push the envelope

• Congestion can be handled
– Additive increase, multiplicative decrease
– Slow start and slow-start restart

• Fundamental tensions
– Feedback from the network?
– Enforcement of “TCP friendly” behavior?

44

