

Link-Layer Services

- Encoding
 - Represent the Os and 1s
- Framing
 - Encapsulate packet into frame, adding header/trailer
- Error detection
 - Receiver detecting errors with checksums
- Error correction
 - Receiver optionally correcting errors
- Flow control
 - Pacing between sending and receiving nodes

Medium Access Control Address

- MAC address (e.g., 00-15-C5-49-04-A9)
 - Numerical address used within a link
 - Unique, hard-coded in the adapter when it is built
 - Flat name space of 48 bits
- Hierarchical allocation: Global uniqueness!
 - Blocks: assigned to vendors (e.g., Dell) by the IEEE
 - Adapters: assigned by the vendor from its block
- Broadcast address (i.e., FF-FF-FF-FF-FF)
 - Send the frame to all adapters

As an Aside: Promiscuous Mode

- · Normal adapter: receives frames sent to
 - The local MAC address
 - Broadcast address FF-FF-FF-FF-FF
- Promiscuous mode
 - Receive everything, independent of destination MAC
- Useful for packet sniffing
 - Network monitoring
 - E.g., wireshark, tcpdump

Why Not Just Use IP Addresses?

- Links can support *any* network protocol
 - Not just for IP (e.g., IPX, Appletalk, X.25, ...)
 - Different addresses on different kinds of links
- An adapter may move to a new location
 - So, cannot simply assign a static IP address
 Instead, must reconfigure the adapter's IP address
- Must identify the adapter during bootstrap

 Need to talk to the adapter to assign it an IP address

10

12

• Carrier sense

- Listen before speaking

– …and don't interrupt!

- Collision detection
 - Detect simultaneous talking
 - \dots and shut up!
- Random access
 - Wait for a random period of time
 - … before trying to talk again!

Please Wait...

Limitations on Ethernet Length

latency d

- Latency depends on physical length of link

 Time to propagate a packet from one end to other
- Suppose A sends a packet at time t
 - And B sees an idle line at a time just before t+d
 - ... so B happily starts transmitting a packet
- B detects a collision, and sends jamming signal
 - But A doesn't see collision till t+2d

Unreliable, Connectionless Service

- Connectionless
 - No handshaking between send and receive adapter
- Unreliable
 - Receiving adapter doesn't send ACKs or NACKs
 - Packets passed to network layer can have gaps
 - Gaps can be filled by transport protocol (e.g., TCP)
 - Otherwise, the application will see the gaps

Summary: Multiple Layers

• Different devices switch different things

- Network layer: packets (routers)
- Link layer: frames (bridges and switches)
- Physical layer: electrical signals (repeaters and hubs)

Conclusion

• Links

- Connect two or more network adapters
- ... each with a unique address
- ... over a shared communication medium

• Coming next

- Network layer (IP)

31

33