COS 302 Precept 4

Spring 2020

Princeton University

Geometric interpretation

Geometric interpretation

Definition

Consider a square matrix $D \in \mathbb{R}^{n \times n}$. D is a diagonal matrix if all $D_{ij} = 0$ if $i \neq j$, i.e., it is of the form:

$$D = \begin{bmatrix} d_1 & 0 \\ & \ddots & \\ 0 & & d_n \end{bmatrix}$$

Properties of Diagonal Matrix

- Diagonal matrices allow fast computation of determinants, powers, and inverses
- The determinant of a diagonal matrix is the product of its diagonal entries
- A matrix power **D**^k is given by each diagonal element raised to the power k
- *D*⁻¹ is the reciprocal of its diagonal elements if all of them are nonzero.

Diagonalizable Matrix

Definition

A matrix $A \in \mathbb{R}^{n \times n}$ is diagonalizable if there exists an invertible matrix $P \in \mathbb{R}^{n \times n}$ such that $D = P^{-1}AP$, where D is a diagonal matrix.

Theorem

A matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ can be factored into

$A = PDP^{-1}$

where $P \in \mathbb{R}^{n \times n}$ and D is a diagonal matrix whose diagonal entries are the eigenvalues of A, if and only if the eigenvectors of A form a basis of \mathbb{R}^n . This factorization is known as the eigendecomposition of A.

Proof of Eigendecomposition Theorem

Proof

Let $A \in \mathbb{R}^{n \times n}$, let $\lambda_1, \lambda_2, \dots, \lambda_n$ be a set of scalars, and p_1, p_2, \dots, p_n be a set of vectors in \mathbb{R}^n . We define $P := [p_1, p_2, \dots, p_n]$. That is, p_i 's are the columns of P.Let $D \in \mathbb{R}^{n \times n}$ be a diagonal matrix whose diagonal entries are $\lambda_1, \lambda_2, \dots, \lambda_n$. That is,

$$D = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

Proof of Eigendecomposition Theorem

Proof Continued

$$\boldsymbol{AP} = [\boldsymbol{Ap_1}, \boldsymbol{Ap_2}, \cdots, \boldsymbol{Ap_n}] \tag{1}$$

$$\boldsymbol{P}\boldsymbol{D} = [\lambda_1 \boldsymbol{p}_1, \lambda_2 \boldsymbol{p}_2, \cdots, \lambda_n \boldsymbol{p}_n]$$
(2)

The above two equations imply that: $Ap_i = \lambda_1 p_i$ $\forall 1 \le i \le n$. That is, the p_i 's are the eigenvectors of A and λ_i 's are the corresponding eigenvalues.

Proof of Eigendecomposition Theorem

Proof Continued

In the definition of diagonalizability, we require that P is invertible, which implies that the columns of P are linearly independent of each other. Therefore, the columns of P, which are also the eigenvectors of A, form a basis of \mathbb{R}^n .

Symmetric Square Matrix

Theorem

Symmetric Square Matrices are always diagonalizable.

Geometric interpretation

Geometric interpretation of eigen-decomposition

Figure 1: Intuition behind the eigendecomposition as sequential transformations.

1. P^{-1} performs a basis change (here drawn in \mathbb{R}^2 and depicted as a rotation-like operation), mapping the eigenvectors into the standard basis.

•
$$P\tilde{x}_1 = x \iff \tilde{x}_1 = P^{-1}x$$

2. *D* performs a scaling along the remapped orthogonal eigenvectors, depicted here by a circle being stretched to an ellipse

•
$$\tilde{x}_2 = D\tilde{x}_1$$

Geometric interpretation of eigen-decomposition

3. *P* undoes the basis change (depicted as a reverse rotation) and restores the original coordinate frame.

•
$$\tilde{x} = P\tilde{x}_2$$

Geometric interpretation

Assume a matrix has eigen-decomposition: $A = PDP^{-1}$.

- Calculating matrix power: $A^{k} = (PDP^{-1})^{k} = PD^{k}P^{-1}$
- Calculating determinant: $det(A) = det(PDP^{-1})$ $= det(P) det(D) det(P^{-1})$ $= det(D) det(P) det(P^{-1})$ $= det(D) det(PP^{-1})$ = det(D)