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Diagonal Matrix

Definition

Consider a square matrix D ∈ Rn×n. D is a

diagonal matrix if all Dij = 0 if i ∕= j , i.e., it is of

the form:

D =

󰀵

󰀹󰀷
d1 0

. . .

0 dn

󰀶

󰀺󰀸
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Properties of Diagonal Matrix

• Diagonal matrices allow fast computation of

determinants, powers, and inverses

• The determinant of a diagonal matrix is the

product of its diagonal entries

• A matrix power Dk is given by each diagonal

element raised to the power k

• D−1 is the reciprocal of its diagonal elements if

all of them are nonzero.
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Diagonalizable Matrix

Definition

A matrix A ∈ Rn×n is diagonalizable if there exists

an invertible matrix P ∈ Rn×n such that

D = P−1AP, where D is a diagonal matrix.
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Eigendecomposition

Theorem

A matrix A ∈ Rn×n can be factored into

A = PDP−1

where P ∈ Rn×n and D is a diagonal matrix

whose diagonal entries are the eigenvalues of A, if

and only if the eigenvectors of A form a basis of

Rn. This factorization is known as the

eigendecomposition of A.
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Proof of Eigendecomposition Theorem

Proof

Let A ∈ Rn×n, let λ1,λ2, · · · ,λn be a set of

scalars, and p1,p2, · · · ,pn be a set of vectors in

Rn. We define P := [p1,p2, · · · ,pn]. That is,

pi ’s are the columns of P.Let D ∈ Rn×n be a

diagonal matrix whose diagonal entries are

λ1,λ2, · · · ,λn. That is,

D =

󰀵

󰀹󰀷
λ1 0

. . .

0 λn

󰀶

󰀺󰀸
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Proof of Eigendecomposition Theorem

Proof Continued

AP = [Ap1,Ap2, · · · ,Apn] (1)

PD = [λ1p1,λ2p2, · · · ,λnpn] (2)

The above two equations imply that: Api = λ1pi

∀1 ≤ i ≤ n. That is, the pi ’s are the eigenvectors

of A and λi ’s are the corresponding eigenvalues.
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Proof of Eigendecomposition Theorem

Proof Continued

In the definition of diagonalizability, we require

that P is invertible, which implies that the

columns of P are linearly independent of each

other. Therefore, the columns of P, which are

also the eigenvectors of A, form a basis of Rn.
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Symmetric Square Matrix

Theorem

Symmetric Square Matrices are always

diagonalizable.
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Geometric interpretation of eigen-decomposition

Figure 1: Intuition behind the eigendecomposition as

sequential transformations.
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Geometric interpretation of eigen-decomposition

1. P−1 performs a basis change (here drawn in R2

and depicted as a rotation-like operation),
mapping the eigenvectors into the standard
basis.

• Px̃1 = x ⇐⇒ x̃1 = P−1x

2. D performs a scaling along the remapped
orthogonal eigenvectors, depicted here by a
circle being stretched to an ellipse

• x̃2 = Dx̃1
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Geometric interpretation of eigen-decomposition

3. P undoes the basis change (depicted as a
reverse rotation) and restores the original
coordinate frame.

• x̃ = Px̃2
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Diagonalization for efficient computation

Assume a matrix has eigen-decomposition:

A = PDP−1.

• Calculating matrix power:

Ak =
󰀃
PDP−1

󰀄k
= PDkP−1

• Calculating determinant:
det(A) = det(PDP−1)

= det(P) det(D) det(P−1)

= det(D) det(P) det(P−1)

= det(D) det(PP−1)

= det(D)
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