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Motivation for Today’s Precept

• Vectors that are at right angles (orthogonal)

have many important mathematical properties

that are heavily used in machine learning.

• Today we will see how we can use right angles

to construct special bases and vector

subspaces, and even create high-dimensional

shadows!
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Angles in High Dimensions

First, before we even define orthogonality, we need

to understand what exactly an angle between

vectors is:

Definition: Angle between two vectors

Assume x ∕= 0, and y ∕= 0 be two vectors that live

in an inner product space. The unique angle

ω ∈ [0, π] between two vectors is given by:

ω = cos−1

!
〈x, y〉
‖x‖ ‖y‖

"
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Example 1

• Let’s calculate the angle between:
• x = [1, 0]T and y = [

√
2/2,

√
2/2]T .

• 〈x, y〉 = 1 ·
√
2/2 + 0 ·

√
2/2 =

√
2/2

• ‖x‖ =
√
x⊤x =

√
1 + 0 = 1

• ‖y‖ =
#

y⊤y =
#

2/4 + 2/4 = 1

• ω = cos−1
$√

2
2

%
= 45◦
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Orthogonal Vectors

Definition: Orthogonality and Orthonormality

Two vectors x and y are orthogonal if and only if

〈x, y〉 = 0. Moreover, if both vectors also have

unit length, i.e. ‖x‖ = 1 = ‖y‖, we say that x and

y are orthonormal.

You can check that this definition coincides with the

usual “two vectors are orthogonal if they are

separated by 90◦”, but is much more general and

useful.
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Matrices and Right Angles

• We can already get a sense of why orthonormal

vectors are useful: adding/multiplying by 0/1

keeps things the same.

Definition: Orthogonal Matrix

A square matrix A ∈ Rn×n is an orthogonal

matrix if and only if its columns are orthonormal

so that

AA⊤ = I = A⊤A.

This implies the special property that A−1 = A⊤.
8



Orthogonal Matrices Preserve Distances

Let A be an orthogonal matrix and let vx = Ax. It

turns out that vx and x have the same length:

‖vx‖2 = ‖Ax‖2

= (Ax)⊤(Ax)

= x⊤A⊤Ax

= x⊤Ix

= x⊤x

‖vx‖2 = ‖x‖2
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Orthogonal Matrices Preserve Angles

Let A be an orthogonal matrix, and let vx = Ax and

vy = Ay be two vectors. Then the angle between

vx and vy is the same as the angle between x and y:

cosω =
(vx)⊤(vy)

‖vx‖ ‖xv‖
=

(Ax)⊤(Ay)

‖Ax‖ ‖Ay‖

=
x⊤A⊤Ay#

x⊤A⊤Axy⊤A⊤Ay

=
x⊤y

‖x‖ ‖y‖
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Orthogonal and Orthonormal Bases

Definition: Orthonormal Basis

Consider an n-dimensional vector space V and a basis

{b1, . . . ,bn} of V . If

〈bi ,bj〉 = 0 for i ∕= j (1)

〈bi ,bi〉 = 1 (2)

for all i , j = 1, . . . , n then the basis is called an

orthonormal basis. If only (1) is satisfied, the basis is

instead called an orthogonal basis. Moreover, (2)

implies that every basis vector has length 1.

12



Example 2

Examples of orthonormal bases:

• The standard basis for Rn is orthonormal.

• In R2, the vectors

b1 =
1√
2

&
1

1

'
, b2 =

1√
2

&
1

−1

'

form an orthonormal basis as b⊤
1 b2 = 0 and

‖b1‖ = 1 = ‖b2‖.
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Orthogonal Vector Spaces

It turns out that even vector spaces can be

orthogonal to each other:

Definition: Orthogonal Complement

Let V be a D-dimensional vector space, and

U ⊆ V an M-dimensional subspace. Then U ’s

orthogonal complement, denoted as U⊥, is a

(D −M)-dimensional subspace of V that contains

all vectors in V that are orthogonal to every

vector in U .
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Example 3: 2D Plane and Normal Vector

Figure 1: A plane U in a three-dimensional vector space can

be described by its normal vector, w, which spans its

orthogonal complement U⊤. 16



Vector Decomposition

Since U ∩ U⊥ = {0}, we can write any vector

x ∈ V into two separate sums involving vectors

from U and U⊥ respectively:

x =
M(

m=1

λmbm +
D−M(

j=1

ψjb
⊥
j , λm,ψj ∈ R

where (b1, . . . ,bM) is a basis of U and

(b⊥
1 , . . . ,b

⊥
D−M) is a basis of U⊥.
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Why should we care?

• Planes, and their higher-dimensional analogs

known as hyperplanes can be described using

the orthogonal complement as shown in the

previous example.

• One reason hyperplanes are so important is

that many machine learning algorithms such as

support vector machines, heavily depend on the

notion of hyperplanes.
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Projection

Definition

Let V be a vector space and U ⊆ V a subspace of

V . A linear mapping π : V → U is called a

projection if π2 = π ◦ π = π.

• Linear mappings can be defined using

transformation matrices. (Recall that every

linear map corresponds to a matrix).

• Projection matrix Pπ has the property that

Pπ = Pπ · Pπ
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Orthogonal Projection

Definition

Let V be a vector space and U ⊆ V a subspace of

V. A linear mapping π : V → U is called an

orthogonal projection if ∀v ∈ V , u = π(v) is

the closest to v for all vectors in U .

• Orthogonal projection is a type of projection

• Easy to check that π2 = π, as π(u) = u.
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Projection onto 1D Subspaces (Lines)

Project x ∈ Rn onto one-dimensional subspace

U ⊆ Rn spanned by b ∈ Rn, where πU(x) ∈ Rn is

the closest to x on U . Below is an illustration on R2:
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Projection onto 1D Subspaces (Lines)

What we know about πU(x):

• The projection πU(x) is closest to x in U

=⇒ vector πU(x)− x is orthogonal to U

• The projection πU(x) belongs to U = span(b)

=⇒ πU(x) = λb for some λ ∈ R
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Projection onto 1D Subspaces

3 Steps for computing the projection:

1. Find the coordinate λ

2. Compute the projection πU(x)

3. Compute the projection matrix Pπ
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Projection onto 1D Subspaces (Step 1/3)

How do we find πU(x)?

1. Find the coordinate λ:

〈x − πU(x),b〉 = 0
πU(x)=λb⇐⇒ 〈x − λb,b〉 = 0

〈x ,b〉 − λ〈b,b〉 = 0 ⇐⇒ λ =
〈x ,b〉
〈b,b〉 =

〈b, x〉
‖b‖2
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Projection onto 1D Subspaces (Step 2/3)

2. Compute the projection πU(x) ∈ U:

πU(x) = λb =
〈b, x〉
‖b‖2 b =

b⊤x
‖b‖2b

Note: Let ω be the angle between b and x , we
have

‖πU(x)‖ =
b⊤x
‖b‖2‖b‖ =| cosω|‖x‖‖b‖ ‖b‖

‖b‖2

=| cosω|‖x‖,
length of πU(x) is scaled by | cosω|.
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Projection onto 1D Subspaces (Step 3/3)

3. Compute the projection matrix Pπ:

• We know πU is a linear mapping, there exists a

projection matrix Pπ such that πU(x) = Pπx

• We have Pπ = bb⊤

‖b‖2 , since

πU(x) = λb = bλ = b
b⊤x
‖b‖2 =

bb⊤

‖b‖2x

Note that Pπ is of rank 1. It projects any vector

x ∈ Rn onto the line through origin with the

direction b.
28



Projection onto 1D Subspaces: Example

Example in R2: Go to www.tinyurl.com/cos302-precept3

Subspace U spanned by b = [1, 0.5]⊤ ∈ R2, different data

points (blue dots) are projected onto subspace U .
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Projection onto General Subspaces

Project x ∈ Rn onto subspace U ⊆ Rn with

dim(U) = m ≤ n, usually U is low-dimensional and

m can be much smaller than n.

• Assume U has a basis (b1, · · · ,bm), then πU(x)

can be represented by a linear combination of

the basis such that πU(x) =
)m

i=1 λibi

• Similar to 1D subspace case: we could first find

the coordinates λi ’s and then find πU(x) and

its corresponding Pπ.
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Projection onto General Subspaces

3 Steps for computing the projection:

1. Find the coordinates λ1 · · ·λm

2. Compute the projection πU(x)

3. Compute the projection matrix Pπ
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Projection onto General Subspaces (Step 1/3)

1. Find the coordinates λ1 · · ·λm:
First, we could write πU(x) =

!m
i=1 λibi = Bλ,

where B = [b1, . . . , bm] ∈ Rn×m, and λ = [λ1, . . . ,λm]
⊤ ∈ Rm.

Since πU(x) is closest to x, we know that x − πU(x) must be orthogonal to all

vectors of U, which is equivalent to being orthogonal to all the basis vectors of

U, i.e. b1, · · · , bm. Therefore, we have

〈b1, x − πU(x)〉 = b⊤
1 (x − πU(x)) = 0
...

〈bm, x − πU(x)〉 = b⊤
m (x − πU(x)) = 0

Rewrite in matrix form,

"

##$

b⊤
1
...

b⊤
m

%

&&' [x − Bλ] = 0 ⇐⇒ B⊤(x − Bλ) = 0

⇐⇒ B⊤Bλ = B⊤x (3)

Equation (3) is called the normal equation. 33



Projection onto General Subspaces (Step 1/3)

1. Cont’d:
Solve the normal equation: since (b1, · · · , bm) are linearly independent,

B⊤B ∈ Rm×m is regular and can be inverted.1

Coordinates are solved by:

λ =
(
B⊤B

)−1
B⊤x

• Matrix
*
B⊤B

+−1 B⊤ is called the pseudo-inverse of B. In the case when B
is full rank, B⊤B is positive definite and invertible.
• In general, such as when solving the normal equation in ordinary least

squares (discussed later), B⊤B is only guaranteed to be positive semi-definite,

a “jitter term” εI is added to it so that it becomes positive definite and

invertible.

1https://math.stackexchange.com/questions/1840801/why-is-ata-invertible-if-a-has-

independent-columns
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Projection onto General Subspaces (Step 2&3/3)

2. Compute the projection πU(x):

πU(x) = Bλ = B
*
B⊤B

+−1
B⊤x

3. Compute the projection matrix Pπ:

Pπ = B
*
B⊤B

+−1
B⊤
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Projection onto General Subspaces:

Remarks

• The projections πU(x) are still vectors in Rn,

although they lie in an m-dimensional subspace

U ⊆ Rn.

• However, to represent a projected vector we

only need the m coordinates λ1, · · · ,λm with

respect to the basis vectors b1, · · · ,bm of U .
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Projection onto General Subspaces:

Connection with Ordinary Least Squares

Suppose we have n observations {xi , yi}ni=1, xi ∈ Rd and

yi ∈ R. We would like to find a weight vector w ∈ Rd such

that yi ≈ w⊤xi for all i .

In other words, we want

y ≈ XTw,

X = [x1, · · · , xn] ∈ Rd×n and y = [y1, · · · , yn]⊤ ∈ Rn.
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Projection onto General Subspaces:

Connection with Ordinary Least Squares

Normally, d < n, the linear system XTw = y is

over-determined and usually does not have a solution. We

could get an approximate solution by minimizing the squared

errors:

arg min
w

S(w)

where

S(w) =
n!

i=1

|yi − x⊤i w|2 = ‖y − XTw‖22
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Projection onto General Subspaces:

Connection with Ordinary Least Squares

A projection perspective:
• minimizing the squared error is equivalent to

finding the vector within the subspace (XTw) that is

closest to y, where w is a vector of the coordinates.
• we could find w by computing the orthogonal

projection of y onto the subspace spanned by the

columns of X⊤.
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Projection onto General Subspaces with

Orthonormal Basis

If the basis is an ONB, we have B⊤B = I.

πU(x) = Bλ = B
*
B⊤B

+−1
B⊤x = BB⊤x

• Coordinate λi = b⊤
i x: project x onto bi and

get the coordinate by taking the inner product.

• πU(x) = Bλ =
)m

i=1 λibi : linearly combine

the basis using the coordinates.

• No inverse needed, computationally efficient: a

reason why we like orthonormal basis.
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Projection onto General Subspaces:

Iris Dataset Example

Open the colab notebook at www.tinyurl.com/cos302-precept3

(a) Non-Orthogonal Projection (b) Orthogonal Projection

Figure 2: Projecting the four dimensional iris dataset onto

two dimensions 41

https://en.wikipedia.org/wiki/Iris_flower_data_set

