
Page 1 of 5

Princeton University

COS 217: Introduction to Programming Systems

Spring 2020 Final Exam Preparation

The exam is cumulative, but emphasizes second-half material.

Topics

You are responsible for all material covered in lectures, precepts, assignments, and required readings. This

is a non-exhaustive list of topics that were covered. Topics that were not covered on the midterm exam are

in boldface.

1. Number Systems

Binary, octal, and hexadecimal

Finite unsigned integers, operations, and overflow

Finite two’s complement signed integers, operations, and overflow

Floating-point numbers

2. C Programming

From source to executable: preprocess, compile, assemble, link

Program structure: multi-file programs with header files

Process memory layout: text, stack, heap, rodata, data, bss sections

Primitive data types

Variable declarations and definitions

Variable scope, linkage, and duration/extent

Constants: #define, constant variables, enumerations

Operators

Statements

Function declarations and definitions

Pointers and arrays

Call-by-reference, arrays as parameters, strings

Command-line arguments

Input/output facilities for standard streams and files, and for text and binary data

getchar(), fgetc(), putchar(), fputc(), gets(), fgets(), puts(),

fputs(), scanf(), fscanf(), printf(), fprintf(), fopen(),

fclose(), fwrite(), putc()

Structures

Dynamic memory management

malloc(), calloc(), realloc(), free()

Common errors: dereference of dangling pointer, memory leak, double free

Abstract objects

Abstract data types; opaque pointers

Generic data structures and functions

Void pointers

Function pointers and function callbacks

Parameterized macros and their dangers (see King Section 14.3)

3. Programming-in-the-Large

Page 2 of 5

Modules and interfaces

Abstract data types and ADT design in C

Heuristics for effective modules: encapsulates data, manages resources, is consistent, has

a minimal interface, detects and handles/reports errors, establishes contracts, has strong

cohesion, has weak coupling

Program and programming style

Bottom-up design, top-down design, least-risk design

Building

Motivation for make, make fundamentals, non-file targets, macros

Testing

External testing with scripts

Internal testing with assertions: validating parameters and return values, checking

invariants, checking array subscripts, checking function values

Unit testing with scaffolds and stubs

Test coverage: statement, path, boundary

Debugging

General heuristics for debugging: understand error messages, think before writing, look

for familiar bugs, divide and conquer, add more internal tests, display output, use a

debugger, focus on recent changes

Heuristics for debugging dynamic memory management: look for common DMM bugs,

diagnose seg faults using gdb, manually inspect malloc() calls, comment-out free()

calls, use Meminfo, use Valgrind

Performance improvement

Should you optimize?

Performance improvement pros and cons, do timing studies

What should you optimize?

Use a performance profiler, e.g. gprof

Optimization techniques

Use a better algorithm or data structure, avoid repeated computation, inline

function calls, unroll loops, use a lower-level language

4. Under the Hood: Language Levels Tour

Language levels

High-level vs. assembly vs. machine language

Computer architecture

The Von Neumann architecture

RAM

CPU: control unit, ALU, registers

Big-endian vs. little-endian byte order

CISC vs. RISC architectures

ARMv8 computer architecture

General purpose registers: R0-R30

8-byte: X0-X30

4-byte: W0-W30

Special purpose registers: XZR, WZR; SP, WSP; PSTATE

ARMv8 assembly language

Label definitions

Directives

Instructions

Load instructions

Store instructions

Manipulation instructions

Data copy, address generation, arithmetic, logical, shift, branch,

function call/return

Page 3 of 5

Control flow

Unconditional branches

Conditional branches

Condition flags (N, C, Z, and V) in PSTATE register

Set by cmp instruction (and other instructions)

Examined by conditional branch instructions

Conditional branches with signed data

beq, bne, blt, ble, bgt, bge

Conditional branches with unsigned data

beq, bne, blo, bls, bhi, bhs

Memory operands

Register, immediate offset, register offset, scaled register offset

Data structures

Arrays

Structures

Padding

Local variables

The stack section and the SP register

ARMv8 function call conventions

Calling and returning

The bl instruction, the ret instructions, the X30 register

Passing arguments

Registers: R0-R7

Returning a value

Register: R0

Optimization

Caller-saved registers: R0-R7, R9-R15

Used for parameters and scratch

Caller must save, if it wants

Callee-saved registers: R19-R28

Used for local variables

Callee must save

ARMv8 machine language

ARMv8 instruction format

Machine language after assembly

DATA section, RODATA section, BSS section, TEXT section, relocation

records

Machine language after linking

Resolution: fetch library code

Relocation: use relocation records to patch code

Output: DATA section, RODATA section, BSS section, TEXT section

5. Under the Hood: Service Levels Tour

Exceptions and processes

Exceptions

Synchronous vs. asynchronous

Interrupts, traps, faults, and aborts

Traps and system-level functions in ARMv8

The process abstraction

The illusion of private address space

Reality: virtual memory via page faults

The illusion of private control flow

Reality: context switches during exception handling

Storage management

Locality of reference and caching

Page 4 of 5

Typical storage hierarchy: registers vs. cache vs. memory vs. local secondary

storage vs. remote secondary storage

Virtual memory

Implementation of virtual memory

Virtual addresses vs. physical addresses

Page tables, page faults

Benefits of virtual memory

Dynamic memory management (DMM)

The need for DMM

DMM using the heap section

The brk() and sbrk() system-level functions

Internal and external fragmentation

Minimal, pad, free-list, doubly-linked free list, bins implementations

DMM using virtual memory

The mmap() and munmap() system-level functions

Process management

Creating processes

The getpid() and fork() system-level function

Waiting for (reaping, harvesting) processes

The wait() system-level function

Executing new programs

The exec family of system-level functions

The system() function

I/O management

The file abstraction

Linux I/O

File descriptors, file descriptor tables, file tables

The creat(), open(), close(), read(), write() system-level

functions

Standard C I/O

Buffering

Implementing standard C I/O using Linux I/O

FILE* and functions

Redirecting standard files

The dup() and dup2() system-level functions

Pipes

The pipe() system-level function

 Signals and alarms

Sending signals

Via keystrokes, the kill command, and the raise() and kill() functions

Handling signals

The signal() function

The SIG_IGN and SIG_DFL arguments to signal()

Alarms

The alarm() function

6. Applications

De-commenting

Lexical analysis using finite state automata

String manipulation

Symbol tables, linked lists, hash tables

Dynamically expanding arrays

High-precision addition

Buffer overrun attacks

Heap management

Page 5 of 5

Linux shells

7. Tools: The Linux/GNU programming environment

Linux
bash
emacs

gcc

gdb for C
make

gprof

gdb for assembly language
objdump

Readings

As specified by the course Schedule Web page.

Required:

C Programming (King): 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.1, 22,

24.1, 24.2, 24.3

Computer Systems (Bryant & O'Hallaron): 1, 8.1-5, 9

ARM 64-bit Assembly Language (Pyeatt with Ughetta): 1, 2, 3, 4, 5, 6, 7

The C Programming Language (Kernighan & Ritchie) 8.7

Recommended:

Computer Systems (Bryant & O'Hallaron): 2, 5.1-5, 6, 7, 10

The Practice of Programming (Kernighan & Pike): 1, 2, 4, 5, 6, 7, 8

Unix Tutorial for Beginners (website)

GNU Emacs Tutorial (website)

Linux Pocket Guide (Barrett)

Deterministic Finite Automaton Wikipedia article (website)

GNU GDB Tutorial (website)

GNU Make Tutorial (website)

GNU Gprof Tutorial (website)

Recommended, for reference only:

ARMv8 Instruction Set Overview

ARMv8 Architecture Manual

Using As

Copyright © 2020

	Princeton University
	COS 217: Introduction to Programming Systems
	Spring 2020 Final Exam Preparation
	Topics
	Readings

