
4/13/20

1

1

Exceptions and Processes

Much of the material for this lecture is drawn from
Computer Systems: A Programmer’s Perspective (Bryant & O’Hallaron) Chapter 8

Princeton University
Computer Science 217: Introduction to Programming Systems

1

“Under the hood”

Context of this Lecture

2

Previously Now

C Language

Assembly Language

Machine Language

Application Program

Operating System

Hardware

language
levels
tour

service
levels
tour

2

2

Goals of this Lecture

Help you learn about:
• The process concept
• Exceptions
• … and thereby…
• How operating systems work
• How application programs interact with

operating systems and hardware

3

3

Agenda

Processes
Illusion: Private address space

Illusion: Private control flow

Exceptions

4

4

Processes

Program
• Executable code
• A static entity

Process
• An instance of a program in execution
• A dynamic entity: has a time dimension
• Each process runs one program

• E.g. the process with Process ID 12345 might be running emacs
• One program can run in multiple processes

• E.g. PID 12345 might be running emacs, and
PID 23456 might also be running emacs –
for the same user or for different users

5

5

Processes Significance

Process abstraction provides two key illusions:
• Processes believe they have a private address space
• Processes believe they have private control flow

Process is a profound abstraction in computer science

6

6

4/13/20

2

Agenda

Processes

Illusion: Private address space
Illusion: Private control flow

Exceptions

7

7

Private Address Space: Illusion

Process X Process Y

Memory
for

Process
X

0000000000000000

FFFFFFFFFFFFFFFF

Memory
for

Process
Y

Hardware and OS give each application process
the illusion that it is the only process using memory
• Enables multiple simultaneous instances of one program!

8

0000000000000000

FFFFFFFFFFFFFFFF

8

Private Address Space: Reality
Process X VM Process Y VM

…FFFFFFFF

All processes use the same physical memory.
Hardware and OS provide programs with
a virtual view of memory, i.e. virtual memory (VM)

unmapped

unmapped

Physical Memory

DiskMemory is divided
into pages

9

…00000000 …00000000

…FFFFFFFF

9

Private Address Space: Implementation

Question:
• How do the CPU and OS implement the illusion of

private address space?
• That is, how do the CPU and OS implement virtual memory?

Answer:
• Page tables: “directory” mapping virtual to physical addresses
• Page faults
• Overview now, details next lecture…

10

10

Private Address Space Example 1

11

• Process executes instruction that references
virtual memory

• CPU determines virtual page
• CPU checks if required virtual page is in

physical memory: yes
• CPU does load/store from/to physical memory

Private Address Space Example 1

iClicker Question coming up . . .

11

Private Address Space Example 2

12

• Process executes instruction that references
virtual memory

• CPU determines virtual page
• CPU checks if required virtual page is in

physical memory: no!
• CPU generates page fault
• OS gains control of CPU
• OS (potentially) evicts some page from

physical memory to disk, loads required
page from disk to physical memory

• OS returns control of CPU to process –
to same instruction

• Process executes instruction that references
virtual memory

• CPU checks if required virtual page is in
physical memory: yes

• CPU does load/store from/to physical memory

Virtual memory enables the illusion of private address spaces

Private Address Space Example 2

12

4/13/20

3

iClicker Question
Q: What effect does virtual memory have on the

speed and security of processes?
Speed Security

A.

B.

C. no change

D.

E.

13

Agenda

Processes

Illusion: Private address space

Illusion: Private control flow
Exceptions

14

14

Private Control Flow: Illusion

Process X Process Y

Simplifying assumption: only one CPU / core

Hardware and OS give each application process the
illusion that it is the only process running on the CPU

Time

15

15

Private Control Flow: Reality

Process X Process Y

Multiple processes are time-sliced to run concurrently

OS occasionally preempts running process to give
other processes their fair share of CPU time

Time

16

16

Process Status
More specifically…

At any time a process has status:
• Running: a CPU is executing instructions for the process
• Ready: Process is ready for OS to assign it to a CPU
• Blocked: Process is waiting for some requested service

(typically I/O) to finish

Modern machines may have multiple CPUs or “cores”, but
the same principles apply if #processes > #cores

• For simplicity, we will speak of “the” CPU

17

17

Running

Ready Blocked

Process Status Transitions

Scheduled for execution: OS selects some process from ready set
and assigns CPU to it
Time slice expired: OS moves running process to ready set
because process consumed its fair share of CPU time
Service requested: OS moves running process to blocked set
because it requested a (time consuming) system service (often I/O)
Service finished: OS moves blocked process to ready set because
the requested service finished

Service
finished

Scheduled for
execution

Time slice
expired *

18

* Preempting
transition

Service
requested *

18

4/13/20

4

Process Status Transitions Over Time

Process X Process Y

Throughout its lifetime a process’s status
switches between running, ready, and blocked

Time

19

ready

ready

blocked

ready

running

running

running

running

ready

running

X time slice expired
Y service requested

Y service finished

Y time slice expired

19

Private Control Flow: Implementation (1)

Question:
• How do CPU and OS implement the illusion of private control flow?
• That is, how do CPU and OS implement process status transitions?

Answer (Part 1):
• Contexts and context switches…

20

20

Process Contexts

Each process has a context
• The process’s state, that is…
• Register contents

• X0..X30, SP, PSTATE, etc. registers
• Memory contents

• TEXT, RODATA, DATA, BSS, HEAP, and STACK

21

21

Context Switch

Context switch:
• OS saves context of

running process
• OS loads context of

some ready process
• OS passes control to

newly restored process

Running

Running

Save context

Load context

Save context

Load context

...

...

RunningReady

Ready

Ready

Process X Process Y

22

22

Aside: Process Control Blocks

Question:
• Where does OS save a process’s context?

Answer:
• In its process control block (PCB)

Process control block (PCB)
• A data structure
• Contains all data that OS needs to manage the process

23

23

Aside: Process Control Block Details
Process control block (PCB):

24

Field Description
ID Unique integer assigned by OS when

process is created

Status Running, ready, or waiting
Hierarchy ID of parent process

ID of child processes (if any)
(See Process Management Lecture)

Priority High, medium, low
Time consumed Time consumed within current time slice
Context When process is not running…

Contents of all registers
(In principle) contents of all of memory

Etc.

24

4/13/20

5

Context Switch Efficiency

Observation:
• During context switch, OS must:

• Save context (register and memory contents) of running process
to its PCB

• Restore context (register and memory contents) of some ready
process from its PCB

Question:
• Isn’t that very expensive (in terms of time and space)?

25

25

Context Switch Efficiency

Answer:
• Not really!
• During context switch, OS does save/load register contents

• But there are few registers
• During context switch, OS does not save/load memory contents

• Each process has a page table that maps virtual memory pages
to physical memory pages

• During context switch, OS tells hardware to start using
a different process’s page tables

• See Virtual Memory lecture

26

26

Private Control Flow: Implementation (2)

Question:
• How do CPU and OS implement the illusion of private control flow?
• That is, how do CPU and OS implement process status transitions?
• That is, how do CPU and OS implement context switches?

Answer (Part 2):
• Context switches occur while the OS handles exceptions…

27

27

Agenda

Processes

Illusion: Private address space

Illusion: Private control flow

Exceptions

28

28

Exceptions

Exception
• An abrupt change in control flow in response to a change in

processor state

29

29

Synchronous Exceptions

Some exceptions are synchronous
• Occur as result of actions of executing program
• Examples:

• System call: Application requests I/O
• System call: Application requests more heap memory
• Application pgm attempts integer division by 0
• Application pgm attempts to access privileged memory
• Application pgm accesses variable that is not in physical memory

30

30

4/13/20

6

Asynchronous Exceptions

Some exceptions are asynchronous
• Do not occur (directly) as result of actions of executing program
• Examples:

• User presses key on keyboard

• Disk controller finishes reading data

• Hardware timer expires

31

31

Exceptions Note

Note:

Exceptions in OS ≠ exceptions in Java

Implemented using
try/catch and
throw statements

32

32

Exceptional Control Flow

Application
program

Exception handler
in operating system

exception

exception
handler

exception
return
(sometimes)

33

33

Exceptions vs. Function Calls
Handling an exception is similar to calling a function

• Control transfers from original code to other code
• Other code executes
• Control returns to some instruction in original code

Handling an exception is different from calling a function
• CPU saves additional data

• E.g. values of all registers
• CPU pushes data onto OS’s stack, not application pgm’s stack
• Handler runs in kernel/privileged mode, not in user mode

• Handler can execute all instructions and access all memory
• Control might return to some instruction in original code

• Sometimes control returns to next instruction
• Sometimes control returns to current instruction
• Sometimes control does not return at all!

34

34

Classes of Exceptions

There are 4 classes of exceptions…

35

35

(1) Interrupts

Application
program

Exception
handler

Occurs when: External (off-CPU) device requests attention
Examples:

User presses key
Disk controller finishes reading/writing data
Network packet arrives

(1) CPU interrupt
pin goes high

(2) After current instr
finishes, control passes
to exception handler

(3) Exception
handler runs

(4) Exception
handler returns
control to next instr

36

36

4/13/20

7

(2) Traps

Application
program

Exception
handler

Occurs when: Application pgm requests OS service
Examples:

Application pgm requests I/O
Application pgm requests more heap memory

Traps provide a function-call-like interface between application pgm and OS

(1) Application
pgm traps

(2) Control passes to
exception handler

(3) Exception
handler runs

(4) Exception
handler returns
control to next instr

37

37

(3) Faults

Application
program

Exception
handler

Occurs when: Application pgm causes a (possibly recoverable) error
Examples:

Application pgm divides by 0
Application pgm accesses privileged memory (seg fault)
Application pgm accesses data that is not in physical memory (page fault)

(1) Current instr
causes a fault

(2) Control passes
to exception handler

(3) Exception
handler runs

(4) Exception handler
returns control to
current instr, or aborts

38

38

(4) Aborts

Application
program

Exception
handler

Occurs when: HW detects a non-recoverable error
Example:

Parity check indicates corruption of memory bit (overheating, cosmic ray!, etc.)

(1) Fatal hardware
error occurs

(2) Control passes
to exception handler

(3) Exception
handler runs

(4) Exception handler
aborts execution

39

39

Summary of Exception Classes

Class Occurs when Asynch
/Synch

Return Behavior

Interrupt External device
requests attention

Asynch Return to next instr

Trap Application pgm
requests OS
service

Sync Return to next instr

Fault Application pgm
causes (maybe
recoverable) error

Sync Return to current instr
(maybe)

Abort HW detects non-
recoverable error

Sync Do not return

40

40

Aside: Traps in Linux / AArch64
To execute a trap, application program should:

• Place number in X8 register indicating desired OS service
• Place arguments in X0..X7 registers
• Execute assembly language “supervisor call” instruction: svc 0

Example: To request change in size of heap section of
memory (see Dynamic Memory Management lecture)…

mov x8, 214
adr x0, newAddr
svc 0

41

Place 214 (change size of
heap section) in X8

Place new address of
end of heap in X0

Execute trap

41

Aside: System-Level Functions
Traps are wrapped in system-level functions
• Part of C library, but not portable to other OS-es

Example: To change size of heap section of memory…
/* unistd.h */
int brk(void *addr);

/* unistd.s */
brk: mov x8, 214

adr x0, newAddr
svc 0
ret

/* client.c */
…
brk(newAddr);
…

A call of a system-level function,
that is, a system call

brk() is a
system-level
function

See Appendix for some Linux system-level functions 42

42

4/13/20

8

Exceptions and Context Switches

Process X Process Y

Context switches occur
while OS is handling exceptions

OS

Exception
Return from exception

Exception

Exception

Return from exception

Return from exception

Time

43

43

Exceptions and Context Switches

Exceptions occur frequently
• Process explicitly requests OS service (trap)
• Service request fulfilled (interrupt)
• Process accesses VM page that is not in physical memory (fault)
• Etc.
• … And if none of them occur for a while …
• Expiration of hardware timer (interrupt)

Whenever OS gains control of CPU via exception…

It has the option of performing context switch

44

44

Private Control Flow Example 1

• Process X is running
• Hardware clock generates interrupt
• OS gains control of CPU
• OS examines “time consumed” field of

process X’s PCB
• OS decides to do context switch

• OS saves process X’s context in its PCB
• OS sets “status” field in process X’s PCB

to ready
• OS adds process X’s PCB to the ready set
• OS removes process Y’s PCB from the ready

set
• OS sets “status” field in process Y’s PCB

to running
• OS loads process Y’s context from its PCB

• Process Y is running

45

Private Control Flow Example 1

45

Private Control Flow Example 2

• Process Y is running
• Process Y executes trap to request read

from disk
• OS gains control of CPU
• OS decides to do context switch

• OS saves process Y’s context in its PCB
• OS sets “status” field in process Y’s PCB

to blocked
• OS adds process Y’s PCB to the blocked set
• OS removes process X’s PCB from the ready

set
• OS sets “status” field in process X’s PCB

to running
• OS loads process X’s context from its PCB

• Process X is running

46

Private Control Flow Example 2

46

Private Control Flow Example 3

• Process X is running
• Read operation requested by process Y

completes => disk controller generates
interrupt

• OS gains control of CPU
• OS sets “status” field in process Y’s PCB

to ready
• OS moves process Y’s PCB from the blocked list

to the ready list
• OS examines “time consumed within slice”

field of process X’s PCB
• OS decides not to do context switch
• Process X is running

47

Private Control Flow Example 3

47

Private Control Flow Example 4

Exceptions enable the illusion of private control flow

• Process X is running
• Process X accesses memory, generates

page fault
• OS gains control of CPU
• OS evicts page from memory to disk, loads

referenced page from disk to memory
• OS examines “time consumed” field of

process X’s PCB
• OS decides not to do context switch
• Process X is running

48

Private Control Flow Example 4

48

4/13/20

9

Summary
Process: An instance of a program in execution

• CPU and OS give each process the illusion of:
• Private address space

• Reality: virtual memory
• Private control flow

• Reality: Concurrency, preemption, and context switches
• Both illusions are implemented using exceptions

Exception: an abrupt change in control flow
• Interrupt: asynchronous; e.g. I/O completion, hardware timer
• Trap: synchronous; e.g. app pgm requests more heap memory, I/O
• Fault: synchronous; e.g. seg fault, page fault
• Abort: synchronous; e.g. failed parity check

49

49

Appendix: System-Level Functions

The following tables present system-level functions that
implement the “traditional Unix” API

• Implemented under the traditional names in the Linux C library
for compatibility

• But, do not necessarily correspond 1:1 to system traps in Linux –
for example, Linux/AArch64 has one openat() trap that
accomplishes the effects of open() and creat()

50

50

Appendix: System-Level Functions
Linux system-level functions for I/O management

Function Description

read() Read data from file descriptor; called by getchar(),
scanf(), etc.

write() Write data to file descriptor; called by putchar(),
printf(), etc.

open() Open file or device; called by fopen()

close() Close file descriptor; called by fclose()

creat() Open file or device for writing; called by fopen(…, "w”)

lseek() Position file offset; called by fseek()

Described in I/O Management lecture
51

51

Appendix: System-Level Functions
Linux system-level functions for process management

Function Description

exit() Terminate the current process

fork() Create a child process

wait() Wait for child process termination

execvp() Execute a program in the current process

getpid() Return the process id of the current
process

Described in Process Management lecture

52

52

Appendix: System-Level Functions
Linux system-level functions for I/O redirection and
inter-process communication

Function Description

dup() Duplicate an open file descriptor

pipe() Create a channel of communication between
processes

Described in Process Management lecture

53

53

Appendix: System-Level Functions
Linux system-level functions for dynamic memory
management

Described in Dynamic Memory Management lecture

Function Description
brk() Move the program break, thus changing the

amount of memory allocated to the HEAP
sbrk() (Variant of previous)

mmap() Map a virtual memory page

munmap() Unmap a virtual memory page

54

54

4/13/20

10

Appendix: System-Level Functions
Linux system-level functions for signal handling

Function Description

alarm() Deliver a signal to a process after a
specified amount of wall-clock time

kill() Send signal to a process

sigaction() Install a signal handler

setitimer() Deliver a signal to a process after a
specified amount of CPU time

sigprocmask() Block/unblock signals

Described in Signals lecture

55

55

