[. . .
Princeton University gﬁ

Computer Science 217: Introduction to Programming Systems

Performance
Improvement

“Premature optimization is the root of all evil.”
-- Donald Knuth

“Rules of Optimization:
* Rule 1: Don't do it.
* Rule 2 (for experts only): Don't do it yet.”

-- Michael A. Jackson

(2\

“Programming in the Large” ggg

Design & Implement
» Program & programming style (done)
+ Common data structures and algorithms (done)
* Modularity (done)
+ Building techniques & tools (done)

Debug
» Debugging techniques & tools (done)
Test

» Testing techniques (done)

Maintain
» Performance improvement techniques & tools < we are here

4 N
Goals of this Lecture .

Help you learn about:
» How to use profilers to identify code hot-spots
» How to make your programs run faster

Why?

« In a large program, typically a small fragment of the code consumes
most of the CPU time

« Itis most likely that inadequate performance is due to that fragment,
so it is important to be able to identify that fragment

+ Part of “programming maturity” is being able to recognize common
approaches for improving the performance of such code fragments

+ Part of “programming maturity” is also being able to recognize what
is worth your time to improve and what is already “good enough”

4 N\
Performance Improvement Pros ggg

Techniques described in this lecture can answer:
« How slow is my program?
« Where is my program slow?
« Why is my program slow?
+ How can | make my program run faster?

Similar techniques (not discussed) can address:

+ How can | make my program use less memory?

/)
2
e N
Agenda .,
Should you optimize?
What should you optimize?
Optimization techniques
4/
4
e N
Performance Improvement Cons g?g
Techniques described in this lecture can yield code that:
« Is less clear/maintainable
« Might confuse debuggers
+ Might contain bugs
« Requires regression testing
So...
)
6

4/1/20

a

When to Improve Performance

“The first principle of optimization is

don't.

Is the program good enough already?
Knowing how a program will be used
and the environment it runs in,
is there any benefit to making it faster?”

-- Kernighan & Pike

-

Enabling Compiler Optimization

Enable compiler speed optimization

gcc2l7 -Ox mysort.c —-o mysort

» Compiler looks for ways to transform your code so that
result is the same but it runs faster
- x controls how many transformations the compiler tries —
see “man gcc” for details
« -00: do not optimize (default if —O not specified)
« -O1: optimize (default if O but no number is specified)
« -02: optimize more (longer compile time)
« -03: optimize yet more (including inlining)

Warning: Speed optimization can affect debugging
* e.g., Optimization eliminates variable = GDB cannot print
value of variable

-

Agenda

Should you optimize?
What should you optimize?
Optimization techniques

11

4 N\
Timing a Program gﬁ;
Run a tool to time program execution
» E.g., Unix time command
$ time sort < bigfile.txt > output.txt
real 0ml2.977s
user 0ml2.860s
sys 0m0.010s
Output:
» Real: Wall-clock time between program invocation and termination
» User: CPU time spent executing the program
+ System: CPU time spent within the OS on the program’s behalf
S
8
4 N
Now What? & v
So you've determined that your program is taking too long,
even with compiler optimization enabled (and NDEBUG
defined, etc.)
Is it time to rewrite the program?
IO/
10
4 N\
Identifying Hot Spots g?g
Spend time optimizing only the parts of the program
that will make a difference!
Gather statistics about your program’s execution
« Coarse-grained: how much time did execution of a particular
function call take?
« Time individual function calls or blocks of code
* Fine-grained: how many times was a particular function called?
How much time was taken by all calls to that function?
« Use an execution profiler such as gprof
IZ/
12

4/1/20

(2\
Timing Parts of a Program Qg

Call a function to compute wall-clock time consumed

* Unix gettimeofday () returns time in seconds + microseconds
#include <sys/time.h>

struct timeval startTime;
struct timeval endTime;
double wallClock dsConsumed ;

gettimeofday (&startTime, NULL) ;
<execute some code here>
gettimeofday (&endTime, NULL) ;
wallClock dsConsumed =
endTime.tv _sec - startTime.tv_sec +
1.0E-6 * (endTime.tv usec - startTime.tv usec);

* Not defined by C90 standard

13

(2\

Identifying Hot Spots

Spend time optimizing only the parts of the program
that will make a difference!

Gather statistics about your program’s execution

» Coarse-grained: how much time did execution of a particular
function call take?
» Time individual function calls or blocks of code

+ Fine-grained: how many times was a particular function called?
How much time was taken by all calls to that function?
« Use an execution profiler such as gprof

15)

15

(2\

GPROF Example Program (cont.) gggg

Example program for GPROF analysis (cont.)

void quicksort(int a[], int left, int right)
{ if (right > left)
{ int mid = part(a, left, right);
quicksort(a, left, mid - 1);
quicksort(a, mid + 1, right);

}

int main(void)

{ fillArray(a, MAX_SIZE);
quicksort(a, 0, MAX_SIZE - 1);
return 0;

4 N\
Timing Parts of a Program (cont.) s &
Call a function to compute CPU time consumed
» clock () returns CPU times in CLOCKS_PER_SEC units
#include <time.h>
clock_t startClock;
clock_t endClock;
double cpuSecondsConsumed;
startClock = clock() ;
<execute some code here>
endClock = clock() ;
cpuSecondsConsumed =
((double) (endClock - startClock)) / CLOCKS PER SEC;
+ Defined by C90 standard
14/
14
4 N
GPROF Example Program g.
Example program for GPROF analysis
+ Sort an array of 10 million random integers
« Artificial: consumes lots of CPU time, generates no output
#include <string.h>
#include <stdio.h> int part(int a[], int left, int right)
#include <stdlib.h> { int first = left-1;
int last = right;
enum {MAX_SIZE = 10000000}; for (;;)
int a[MAX_SIZE]; { while (a[++first] < a[right]) ;
while (a[right] < a[--last])
void fillArray(int a[], int size) if (last == left)
{ int i; break;
for (i = 0; i < size; i++) if (first >= last)
a[i] = rand(); break;
} swap(a, first, last);
void swap(int a[], int i, int j) swap(a, first, right);
{ int temp = a[i]; return first;
a[i] = a[jl; }
a[j] = temp;
}
16/
16
4 N\
Using GPROF %?3
Step 1: Instrument the program
gcc2l7 -pg mysort.c -o mysort
+ Adds profiling code to mysort, that is...
* “Instruments” mysort
Step 2: Run the program
./mysort
+ Creates file gmon . out containing statistics
Step 3: Create a report
gprof mysort > myreport
+ Uses mysort and gmon. out to create textual report
Step 4: Examine the report
cat myreport 15)

17

18

4/1/20

4 N\
gprof Design 9?5
What's going on behind the scenes?
« -pg generates code to interrupt program many times per second
» Each time, records where the code was interrupted
« gprof uses symbol table to map back to function name
19/
19
4 N
The GPROF Report (cont.) 3
Rl
Call graph profile
index % time self children called name
<spontaneous>
1] 100.0 0.00 2.68 main [1]
0.08 2.53 1/1 quicksort [2]
0.07 0.00 1/1 fillAarray [5]
13330614 quicksort [2]
0.08 2.53 1/1 main [1]
2] 97.4 0.08 2.53 1+13330614 quicksort [2]
2.27 0.25 6665307/6665307 part [3]
13330614 quicksort [2]
2.27 0.25 6665307/6665307 quicksort [2]
131 94.4 2.27 0.25 6665307 part [3]
0.25 0.00 54328749/54328749 swap [4]
0.25 0.00 54328749/54328749 part [3]
4] 9.4 0.25 0.00 54328749 swap [4]
0.07 0.00 1/1 main [1]
(3] 2.6 0.07 0.00 1 fillArray [5]
2]/
21
4 N\
GPROF Report Analysis 2
Observations
» swap () is called very many times; each call consumes little time;
swap () consumes only 9% of the time overall
- partition() is called many times; each call consumes little time;
but partition () consumes 85% of the time overall
Conclusions
« To improve performance, try to make partition () faster
« Don’t even think about trying to make £i11Array () or
quicksort () faster
24/

4 N\
The GPROF Report s 4
% cumulative self self total
time seconds seconds calls s/call s/call name
84.54 2.27 2.27 6665307 0.00 0.00 part
9.33 2.53 0.25 54328749 0.00 0.00 swap
2.99 2.61 0.08 1 0.08 2.61 quicksort
2.61 2.68 0.07 1 0.07 0.07 fillArray
» Each line describes one function
» name: name of the function
* %time: percentage of time spent executing this function
« cumulative seconds: [skipping, as this isn’t all that useful]
- self seconds: time spent executing this function
« calls: number of times function was called (excluding recursive)
« self s/call: average time per execution (excluding descendants)
« total s/call: average time per execution (including descendants)
20/
20
4 w N
The GPROF Report (cont.) 23
Call graph profile (cont.)
+ Each section describes one function
» Which functions called it, and how much time was consumed?
« Which functions it calls, how many times, and for how long?
» Usually overkill; we won'’t look at this output in any detail
22/
22
4 N\
Agenda g?g
Should you optimize?
What should you optimize?
Optimization techniques
25/

24

25

Using Better Algs and DSs

(2\

Use a better algorithm or data structure

Example:
» Would a different sorting algorithm work better?

See COS 226...
» But only where it would help! Not worth using asymptotically
efficient (but complex, hard-to-understand, hard-to-maintain, ...)

algorithms and data structures in parts of your code that may not
make any difference anyway!

26

(2\

Aside: Side Effects as Blockers

int g(int x)
{ return f(x) + f(x) + £(x) + £(x);
}

int g(int x)
{ return 4 * f£(x);
}

Q: Could a good compiler do that for you?

A: Only sometimes...
Suppose £ () has side effects?

mt T3 S 0 And £ () might be defined in
int £(int x) another file known only at link
{ return counter++; time!

}

29/

29

(2\

Avoiding Repeated Computation sgg

for (i = 0; i < strlen(s); i++)
Before: | { /% Do something with s[i] */
}

length = strlen(s);

for (i = 0; i < length; i++)

{ /* Do something with s[i] */
}

After:

Could a good
compiler do
that for you?

32

e N
> iClicker Question Qg
Q: Could a good compiler do this optimization for you?
int g(int x)
Before: |{ return f(x) + £(x) + £(x) + £(x);
}
int g(int x)
After: |{ =zeturn 4 * £(x);
}
A. Yes
B. Only sometimes
C.No
J
28
e N
> iClicker Question g
Q: Could a good compiler do this optimization for you?
for (i = 0; i < n; i++)
Before: for (j = 0; j < n; j++)
a[n*i + j]1 = b[j];
for (i = 0; 1 < n; i++)
{ ni=n*i;
After: for (3 =0; j < n; j++)
a[ni + j] = b[j];
}
A. Yes
B. Only sometimes
C.No
J
31
e N
> iClicker Question sgg
Q: Could a good compiler do this optimization for you?
void twiddle(int *pl, int *p2)
Before: [{ *PL 4= *p2;
*pl += *p2;
}
void twiddle(int *pl, int *p2)
After: | { *pl += *p2 * 2;
}
A. Yes
B. Only sometimes
C.No J

34

4/1/20

=
Aside: Aliases as Blockers

void twiddle(int *pl, int *p2)
{ *pl += *p2;
*pl += *p2;

{ *pl += *p2 * 2;
}

} void twiddle (int *pl, int *p2)

Q: Could a good compiler do that for you?
A: Not necessarily

What if p1 and p2 are aliases?
* What if p1 and p2 point to the same integer?
« First version: result is 4 times *p1
» Second version: result is 3 times *p1

Some compilers support restrict keyword

a

Inlining Function Calls

Could a good
compiler do

Before: that for you?

void g(void)
{ /* Some code */

After:

void £(void) ‘('°if S
t . /* Some code */
g0

Beware: Can introduce redundant/cloned code
Some compilers support inline keyword

35

36

~
Unrolling Loops

Could a good
compiler do
that for you?

for (i = 0; 1 < 6; i++)
a[i] = b[i] + c[i];

Original:

for (i =0; 1 < 6; i += 2)
Maybe |{ ali+0] = b[i+0] + c[i+0];
faster: a[i+l] = b[i+l] + c[i+l];
' }

a[i+0] = b[i+0]
a[i+l] = b[i+l]
a[i+2] = b[i+2]
a[i+3] = b[i+3]
a[i+d4] = b[i+4]
a[i+5] = b[i+5]

c[i+0];
cl[i+l];
cl[i+2];
c[i+3];
cl[i+4];
c[i+5];

Maybe
even
faster:

+
+
+
+
+
+

Some compilers provide option, e.g. —funroll-loops

37/

-~

Using a Lower-Level Language

Rewrite code in a lower-level language
+ As described in this module of the course ...
+ Compose key functions in assembly language instead of C
« Use registers instead of memory
» Use instructions (e.g. adc) that compiler doesn’ t know

Beware: Modern optimizing compilers generate fast code
» Hand-written assembly language code could be slower!

38/

37

~
Summary

Steps to improve execution (time) efficiency:
» Don'tdo it.

Don't do it yet.

Time the code to make sure it's necessary

Enable compiler optimizations

Identify hot spots using profiling

Use a better algorithm or data structure

Identify common inefficiencies and bad idioms

Fine-tune the code

39

38

4/1/20

