"Princeton University

Computer Science 217: Introduction to Programming Systems

ok

=
Context of this Lecture

First half of the semester: “Programming in the large”
Second half: “Under the hood”

Starting Now Later

C Language Application Program

language service
Assembly Language | levels Operating System | |evels
tour tour

Machine Language

-~

Agenda

Language Levels
Architecture
Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

-

Machine Languages g?g

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000 0000

Characteristics

9222 9120 1121 A120 1121 A121 7211 0000

* Not portable 0000 0001 0002 0003 0004 0005 0006 0007

« Specific to hardware 0008 0009 000A 000B 000C 000D OOOE 000F

0000 0000 0000 FE10 FACE CAFE ACED CEDE

+ Simple

« Each instruction does a

simple task — poor ratio of [1234 5678 9ABC DEFO 0000 0000 F0OD 0000
0000 0000 EEEE 1111 EEEE 1111 0000 0000

fUnC“ona“ty to code size B1B2 F1F5 0000 0000 0000 0000 0000 0000

» Not human readable
« Not structured
* Requires lots of effort!
« Requires tool support

Assembly Language:
Part 1
Y
1
e N
Lectures vs. Precepts g
Approach to studying assembly language:
Study partial pgms Study complete pgms
Begin with simple constructs; Begin with small pgms;
proceed to complex ones proceed to large ones
Emphasis on reading code Emphasis on writing code
2/
3
e N
High-Level Languages ggg
Characteristics count = 0;
+ Portable while (n>1)
« To varying degrees { count++;
« Complex .
« One statement can do S (el
much work — good ratio of n = n*3+1;
functionality to code size else
» Human readable n = n/2;
+ Structured - if(), for(), } !
while(), etc.
>
5

*3/22/20

a

N

Q: Why learn assembly language?

A: Knowing assembly language helps you:
+ Write faster code
« In assembly language
« In a high-level language!
+ Write safer code
« Understanding mechanism of potential security problems
helps you avoid them — even in high-level languages
» Understand what's happening “under the hood”
« Someone needs to develop future computer systems
« Maybe that will be you!
+ Become more comfortable with levels of abstraction
« Become a better programmer!

-

Agenda

Language Levels
Architecture
Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

10

~
Von Neumann Architecture

Instructions (encoded within words)
are fetched from RAM Control

Unit

1

Control unit interprets instructions

+ to shuffle data between
registers and RAM

Registers
to move data from registers to

ALU (arithmetic+logic unit) ,_”

where operations are performed
v v [[! Data bus

RAM

4 N\
Assembly Languages s s
L 1, 0

Characteristics ey
lLloop:
» Not portable cmp w0, 1
« Each assembly lang ble endloop
. ¥ add w0, w0, #1
instruction maps to one ands wzr, w0, #1
machine lang instruction beq else
. Si le add w2, w0, w0
imp| add w0, w0, w2
« Each instruction does a add w0, wo, 1
simple task else: SBcss
* Human readable asr w0, w0, 1
(In the same sense that Polish is lendif:
human readable, if you know Polish.)
b loop
lendloop:
7
7
4 N\
Why Learn ARM Assembly Lang? ag
Why learn ARMv8 (a.k.a. AARCH64) assembly language?
Pros
* ARM is the most widely used processor in the world (in your phone,
in your Chromebook, in the internet-of-things, Armlab)
+ ARM has a modern and (relatively) elegant instruction set,
compared to the big and ugly x86-64 instruction set
Cons
+ x86-64 dominates the desktop/laptop, for now
(but there are rumors that Apple is going to shift Macs to ARM...)
S/
9
4 N\
John von Neumann (1903-1957) gg
In computing
« Stored program computers
« Cellular automata
« Self-replication
Other interests
+ Mathematics and statistics
« Inventor of game theory
* Nuclear physics
Princeton connection
* Princeton Univ & IAS, 1930-1957
« https:/paw.princeton.edu/article/early-historv-computing-princeton
Known for “Von Neumann architecture (1950)”
+ In which programs are just data in the memory
\ «_Contrast to the now-obsolete “Harvard architecture” '
11

12

*3/22/20

https://paw.princeton.edu/article/early-history-computing-princeton

=
Von Neumann Architecture

Registers CPU

Small amount of storage on the CPU CB”‘TI
ni

« Top of the “storage hierarchy”: I
above RAM, disk, cloud, etc.
« i.e., very {small, expensive, fast}

Registers
ALU (arithmetic+logic unit) instructions

operate on registers

—

| l Data bus

RAM

a

ALU Arithmetic Example

srct src2

l 3

operation —,\

Control
Unit

— flags
Registers

dest -—I |

| l Data bus

RAM

13

14

-

Von Neumann Architecture .

RAM (Random Access Memory) CPU
. Control
Conceptually: large array of bytes
. . . Unit ! 1
(gigabytes+ in modern machines)

1

« Contains data
(program variables, structs, arrays)
« and the program!

Registers

p—

Instructions are fetched from RAM

| l Data bus

RAM

15/

-

Time to reminisce about old TOYs .

R

N

TOY REFERENCE CARD

INSTRUCTION FORMATS

[
Format RR: | opcode |
Format A: | opcode |

ARITHMETIC and LOGICAL o
1: add
2: subtract
3: and

4 xor
5: shift left
6: shift right

TRANSFER between registe
7: load address
8: load
9: store
At load indirect
B: store indirect

conTRoL

0: halt
C: branch zero

F: jump and link

. ‘.}} ont, aem)
a | addr | (-9, c-r)

Word size. Tho TOY machine has two types of storage: main memory and registers. Each ently stores one word
ofinformation. On tne TOY machine, a word s a sequence of 16 bits. Typicaly, we interpret these 16 bits as a
“exadecima integer in the range 0000 through FFFF. Using two's complement notation, we can also interoret i
35 2 decimal integer in the range -32,768 to +32,767. See Section 5.1 for a refresner on number representations
and two's complement integers.
Main memory. The TOY machine has 256 words of main memory. Each memory location is labeled with a

3 we use imal integers in the range 00 through Ee. Think
of a mermory localon as a maibox, and a memory address as a postal address. Main memory is used 10 store
nstructions and date.

Registers. The TOY machine has 16 registers, indexed from 0 through . Registers are much like main memory:
3ach register stores one 16-bit word. However, registers provide a faster form of storage than main memory.

f ed fation and play the roje of varables in the TOY language.
Register 015 a special register whose output value is always 0.

Program counter. The program counter of pc is an exira register that keeps track of the next instruction 1o be.
axecuted. h stores 8 bits, corresponding to a hexadecimal integer in the range 00 through ¥, This integer stores

Ines e arilaas of the mext inatn ictien 1 sxer te

Register 0 always reads 0.
Loads from M[FF] come from stdin.

Stores to M[FF] go to stdout.

16-bit registers (two's complement)

16-bit memory locations
8-bit program counter

16)

15

16

~
Registers and RAM

Typical pattern:
» Load data from RAM to registers
* Manipulate data in registers
« Store data from registers to RAM

On AARCH®64, this pattern is enforced
« “Manipulation” instructions can only access registers
« This is known as a Load/store architecture

« Characteristic of “RISC” (Reduced Instruction Set Computer) vs.
“CISC” (Complex Instruction Set Computer) architectures, e.g. x86

17/

-

Registers (ARM-64 architecture)

63 31 0
[x0 [wo |
(= e |
[x29 (¢m) ‘\,29 |
‘x30 (LR) [w30 i
‘xzr (all zeros) “,zr ‘
‘sp (stack pointer) ‘
‘pc (program counter) ‘

‘n‘z‘c‘v‘ pstate ‘

17

18

*3/22/20

https://introcs.cs.princeton.edu/java/62toy/

*3/22/20

e N\
SP Register Qg

low address

Special-purpose register...
+ SP (Stack Pointer):
Contains address of top
(low memory address)
of current function’s stackframe

P —

stackframe

high address

Allows use of the STACK section of memory
(See Assembly Language: Function Calls lecture later)

20

(2\

PSTATE Register .’

‘n‘z‘c‘v‘ pstate ‘

Special-purpose register...
+ Contains condition flags:
n (Negative), z(Zero), c (Carry), v (oVerflow)
+ Affected by compare (cmp) instruction
« And many others, if requested
» Used by conditional branch instructions
* beq, bne, blo, bhi, ble, bge, ...
* (See Assembly Language: Part 2 lecture)

22

e N\
ALU Arithmetic Example 2

Control
srct src2 Unit

L 5

operation

— flags
9 Registers

dest -—' |

| l Data bus

RAM

4 N\
General-Purpose Registers gﬁ
X0 .. X30
* 64-bit registers
«+ Scratch space for instructions, parameter passing to/from functions,
return address for function calls, etc.
+ Some have special roles defined in hardware (e.g. X30)
or defined by software convention (e.g. X29)
+ Also available as 32-bit versions: WO .. W30
XZR
+ On read: all zeros
+ On write: data thrown away
+ Also available as 32-bit version: WZR
19
J
19
4 N\
PC Register & ;
Special-purpose register...
+ Contains PC (Program Counter)
+ Stores the location of the next instruction
« Address (in TEXT section) of machine-language
instructions to be executed next
» Value changed:
« Automatically to implement sequential control flow
« By branch instructions to implement selection, repetition
c
il
B
(0]
7]
v
Ll
l_
21/
21
4 N\
Agenda %g@
Language Levels
Architecture
Assembly Language: Performing Arithmetic
Assembly Language: Load/Store and Defining Global Data
23/
23

24

a

Instruction Format

Many instructions have this format:

srcl src2

dest

name{,s} dest, srcl, src2
name{,s} dest, srcl, immed

* name: name of the instruction (add, sub, mul, and, etc.)

. s: if present, specifies that condition flags should be set

» dest and src1,src2 are x registers: 64-bit operation
» dest and src1,src2 are w registers: 32-bit operation

+ src2 may be a constant (“immediate” value) instead of a register

25

-

More Arithmetic .

static long x;
static long y;

Assume that...

« x stored in x1
« y stored in x2

static long z;

z=x;y « z stored in x3
z=x*y

Beo/® We'll see later how to
zZ=x&Y; .

z=x |y make this happen
z=x"y;

z=x>>y

Note arithmetic shift!
Logical right shift
with 1sr instruction

27/

27

-

Signed vs Unsigned?

Assume that...
« x stored in x1
« y stored in x2

static long x;
static unsigned long y;

x++;

y--i

add x1, x1, 1
Mostly the same algorithms, same instructions!

« Can set different condition flags in PSTATE
« Exception is division: sdiv vs udiv instructions

4 N\
64-bit Arithmetic gﬁ;
C code: Assume that. ..
static long length; . ,
static long width; ther.e sa gpod reaspn for
. . having variables with
static long perim;) N
file scope, process duration
e = « length stored in x1
(length + width) * 2; « width stored in x2
« perim stored in x3
We'll see later how to
make this happen
. Recall use of
Assembly code: left shift by 1 bit
add x3, x1, x2 to multiply by 2
1sl x3, x3, 1
26/
26
4 N\

More Arithmetic: Shortcuts .

static long x;
static long y;
static long z;

orr x3, xzr, x1
sub x3, xzr, x1

Assume that...
« x stored in x1

« y stored in x2
« z stored in x3

We'll see later how to
make this happen

These are actually
assembler shortcuts
for instructions with
XZR!

28/
28
4 N\
32-bit Arithmetic 2
Assume that...
Oy a3 Aoy « length stored in w1
static int width; . A
.) « width stored in w2
static int perim; . .
« perim stored in w3
perim = ’
T & CAEY) © B We'll see later how to
make this happen
Assembly code using “w” registers:
add w3, wl, w2
30/

29

30

*3/22/20

-~

8- and 16-bit Arithmetic?

static char x;
static short y;

X+

y-=;

No specialized instructions
* Use “W” registers
« Specialized “load” and “store” instructions for transfer of
shorter data types from / to memory — we'll see these later
« Corresponds to C language semantics: all arithmetic is
implicitly done on (at least) ints

J
31
4 N\
Loads and Stores g.
Most basic way to load (from RAM) and store (to RAM):
1ldr dest, [src]
str src, [dest]
« dest and src are registers!
» Registers in [brackets] contain memory addresses
« Every memory access is through a “pointer”!
33/
33
4 N\
Loads and Stores &gg
Most basic way to load (from RAM) and store (to RAM):
1dr dest, [src]
str src, [dest]
« dest and src are registers!
+ Registers in [brackets] contain memory addresses
« Every memory access is through a “pointer”!
+ How to get correct memory address into register?
« Depends on whether data is on stack (local variables),
heap (dynamically-allocated memory), or global / static
« For today, we'll look only at the global / static case
35/

Agenda

(2\

Language Levels

Architecture

Assembly Language: Performing Arithmetic

Assembly Language: Load/Store and Defining Global Data

J
32
4 N\
Signed vs Unsigned, 8- and 16-bit g.
1ldrb dest, [src]
ldrh dest, [src]
strb src, [dest]
strh src, [dest]
ldrsb dest, [src]
ldrsh dest, [src]
dest, [src]
Special instructions for reading/writing bytes (8 bit),
shorts (“half-words”: 16 bit)
« See appendix of these slides for information on ordering:
little-endian vs. big-endian
Special instructions for signed reads
« “Sign-extend” byte, half-word, or word to 32 or 64 bits
34)
34
4 N\
i * ®
Our First Full Program 43
static int length = 1; .section .data
static int width = 2; length: .word 1
static int perim = 0; width: .word 2
perim: .word 0
int main() .section .text
{ .global main
perim = main:
(length + width) * 2; adr %0, length
return 0; 1ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
add wl, wl, w2
1sl wl, wi, 1
adr x0, perim
str wl, [x0]
mov w0, 0
ret
* Sorry, | know by convention it should be “Hello, World!”. 35/

35

36

*3/22/20

Memory sections

static int length = 1;
static int width = 2;

static int perim = 0;

int main()

{
perim =
(length + width) * 2;
return 0;

}

Sections
.data: read-write
.rodata: read-only
.bss: read-write, initialized to zero
.text: read-only, program code
Stack and heap work differently!

.section .data
length: .word 1
width: .word 2
perim: .word 0

.section .text

.global main

main:

adr x0, length
ldr wl, [x0]
adr x0, width

ldr w2, [x0]
add wl, wl, w2

1sl wl, wi, 1
adr x0, perim
str wl, [x0]
mov w0, 0

ret

37
main()
static int length = 1; .section .data
static int width = 2; length: .word 1
static int perim = 0; width: .word 2
perim: .word 0
int main() .section .text
{ .global main
perim = main:
(length + width) * 2; adr %0, length
return 0; ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
Global symbol add wi, wi, w2
Declare “main” to be a 1sl wi, wl, 1
globally-visible label @iz =0, peEm
str wl, [x0]
mov w0, 0
ret
39
39

Loads and Stores

static int length = 1;
static int width = 2;
static int perim = 0;

int main()

{
perim =
(length + width) * 2;
return 0;

}

Load and store
Use “pointer” in x0 to load from
and store to memory

.section .data
length: .word 1
width: .word 2
perim: .word 0

.section .text

.global main

main:

adr %0, length
ldr wl, [x0]
adr x0, width
ldr w2, [x0]
add wl, wl, w2
1sl wl, wi, 1
adr x0, perim
str wl, [x0]
mov w0, 0

ret

41

Variable definitions

static int length = 1;
static int width = 2;

static int perim = 0;

int main()

{
perim =
(length + width) * 2;
return 0;

Declaring data
“Labels” for locations in memory
.word: 32-bit int and initial value

See appendix for variables in
other sections, with other types.

.section .data
length: .word 1
width: .word 2
perim: .word O

.section .text

.global main

main:

adr x0, length
ldr wl, [x0]
adr x0, width

ldr w2, [x0]
add wl, wl, w2

1sl wl, wi, 1
adr x0, perim
str wl, [x0]
mov w0, 0

ret

38

Make a “pointer”

static int length = 1;
static int width = 2;

static int perim = 0;

int main()

{
perim =
(length + width) * 2;
return 0;

Generating addresses
adr puts address of
a label in a register

.section .data
length: .word 1
width: .word 2
perim: .word 0

.section .text

.global main

main:

adr %0, length
ldr wl, [x0]
adr x0, width

ldr w2, [x0]
add wl, wl, w2

1sl wl, wi, 1
adr x0, perim
str wl, [x0]
mov w0, 0

ret

40

Return

static int length = 1;
static int width = 2;
static int perim = 0;

int main()

{
perim =
(length + width) * 2;
return 0;

}

Return a value
ret returns to the caller*, with
register 0 holding the return value

* or, in A5, not.

.section .data
length: .word 1
width: .word 2
perim: .word 0

.section .text

.global main

main:

adr x0, length
ldr wl, [x0]
adr x0, width

ldr w2, [x0]
add wl, wl, w2

1sl wl, wil, 1
adr x0, perim
str wl, [x0]
mov w0, 0
ret

42

*3/22/20

Trace

static int length = 1;
static int width = 2;

static int perim = 0;

int main()
{

perim =

.section .data
length: .word 1
width: .word 2
perim: .word 0

.section .text

.global main
main:

(length + width) * 2; adr %0, length
return 0; ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
Registers Memory |29 wi, wl, w2
1sl wl, wi, 1
x0 length adr %0, perim
wl width str wl, [x0]
mov w0, 0
w2 perim n ret
43
Trace A A
static int length = 1; .section .data
static int width = 2; length: .word 1
static int perim = 0; width: .word 2
perim: .word 0
int main() .section .text
{ .global main
perim = main:
(length + width) * 2; adr %0, length
return 0; ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
. add wl, wl, w2
Registers Memory |77 e
x0 length adr %0, perim
: = iy 0
wl| 1 width str wi, [x0]
mov w0, 0
w2 perim n ret
45
Trace
static int length = 1; .section .data
static int width = 2; length: .word 1
static int perim = 0; width: .word 2
perim: .word 0
int main() .section .text
{ .global main
perim = main:
(length + width) * 2; adr %0, length
return 0; 1ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
Registers Memory ~ [39¢ i, wl, w2
1sl wl, wi, 1
x0 length adr %0, perim
wl 3 width str wl, [x0]
mov w0, 0
w2 2 perim n ret
47

47

Trace

static int length = 1;
static int width = 2;

static int perim = 0;

int main()

.section .data
length: .word 1
width: .word 2
perim: .word 0

.section .text

{ .global main
perim = main:
(length + width) * 2; adr %0, length
return 0; ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
Registers Memory |29 wi, wl, w2
1sl wl, wi, 1
x0 length adr %0, perim
wl 1 width str wl, [x0]
mov w0, 0
w2 perim n ret
44
Trace o
static int length = 1; .section .data
static int width = 2; length: .word 1
static int perim = 0; width: .word 2
perim: .word 0
int main() .section .text
{ .global main
perim = main:
(length + width) * 2; adr %0, length
return 0; ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
. add wl, wl, w2
Registers Memory |77 e
x0 length adr %0, perim
: = iy 0
wl| 1 width str wi, [x0]
mov w0, 0
w2 | 2 perim n ret
46
Trace
static int length = 1; .section .data
static int width = 2; length: .word 1
static int perim = 0; width: .word 2
perim: .word 0
int main() .section .text
{ .global main
perim = main:
(length + width) * 2; adr x0, length
return 0; 1ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
Registers Memory |29 wi, wi, w2
1sl wl, wi, 1
x0 length adr %0, perim
wl 6 width str wl, [x0]
mov w0, 0
w2 2 perim n ret
48

48

*3/22/20

*3/22/20

(2\
Trace &@
static int length = 1; .section .data
static int width = 2; length: .word 1
static int perim = 0; width: .word 2
perim: .word 0
int main() .section .text
{ .global main
perim = main:
(length + width) * 2; adr %0, length
return 0; ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
Registers Memory |29 wi, wl, w2
1sl wl, wi, 1
x0 length adr %0, perim
wl 6 width str wl, [x0]
mov w0, 0
w2 | 2 perim n e
50/
(2\
Trace g
static int length = 1; .section .data
static int width = 2; length: .word 1
static int perim = 0; width: .word 2
perim: .word 0
int main() .section .text
{ .global main
perim = main:
(length + width) * 2; adr %0, length
return 0; ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
Return to caller add wl, wl, w2
ret instruction 1sl wi, wi, 1
adr %0, perim
str wl, [x0]
mov w0, 0
ret
52/
(2\

Appendix 1

Defining data: other sections and sizes

4 N\
Trace Qg
static int length = 1; .section .data
static int width = 2; length: .word 1
static int perim = 0; width: .word 2
perim: .word 0
int main() .section .text
{ .global main
perim = main:
(length + width) * 2; adr %0, length
return 0; ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
Registers Memory |29 wi, wl, w2
1sl wl, wi, 1
x0 length adr %0, perim
wl 6 width str wl, [x0]
mov w0, 0
w2 | 2 perim n ret
49/
49
4 N\
Trace & y;
static int length = 1; .section .data
static int width = 2; length: .word 1
static int perim = 0; width: .word 2
perim: .word 0
int main() .section .text
{ .global main
perim = main:
(length + width) * 2; adr %0, length
return 0; ldr wl, [x0]
} adr x0, width
ldr w2, [x0]
Return value add wl, wl, w2
Passed back in register w0 ek Ty Ty 2
adr %0, perim
str wl, [x0]
mov w0, 0
rat
51/
51
4 N\
Summary ggg
Language levels
The basics of computer architecture
« Enough to understand AARCH64 assembly language
The basics of AARCH64 assembly language
* Instructions to perform arithmetic
« Instructions to define global data and perform data transfer
To learn more
+ Study more assembly language examples
« Chapters 2-5 of Pyeatt and Ughetta book
+ Study compiler-generated assembly language code
* gcc2l7 -S somefile.c
53/
53

54

a

Defining Data: DATA Section 2

char ¢ = 'a'; .section ".data"
short s = 12;
int i = 345; c:

long 1 = 6789;

.global c
.byte 'a’'

.global s
s: .short 12
.global i
i: .word 345
.global 1

1l: .quad 6789

Notes:

Can place label on same line as next instruction
.global instruction

56

-

Defining Data: RODATA Section

.section ".rodata"

.."hello\n"..; helloLabel:

.string "hello\n"

Notes:
.section instruction (to announce RODATA section)
.string instruction

58/

58

-

Byte Order

AARCH64 is a little endian architecture
« Least significant byte of multi-byte entity
is stored at lowest memory address

« “Little end goes first” 1000

1001 [00000000

00000101

The int 5 at address 1000:

1002 [00000000

1003 (00000000

Some other systems use big endian
* Most significant byte of multi-byte entity
is stored at lowest memory address
+ “Big end goes first”

1000 |00000000

1001 |00000000

The int 5 at address 1000: 1002 (00000000

1003 [00000101

4 N\
Defining Data: DATA Section 1 s 4
static char ¢ = 'a'; .section ".data"
static short s = 12; €3
static int i = 345; o -byte 'a
static long 1 = 6789; .short 12
€3
.word 345
g
Notes: -quad 6789
.section instruction (to announce DATA section)
label definition (marks a spot in RAM)
.byte instruction (1 byte)
.short instruction (2 bytes)
.word instruction (4 bytes)
.quad instruction (8 bytes)
55/
55
4 N\
Defining Data: BSS Section g.
static char c; .section ".bss"
static short s; c:
static int i; .skip 1
static long 1; s:
.skip 2
s
.skip 4
ilg
.skip 8
Notes:
.section instruction (to announce BSS section)
.skip instruction
57/
57
4 N\
Appendix 2 ﬁgg
Big-endian vs little-endian byte order
59/
59

60

*3/22/20

a

Byte Order Example 1

#include <stdio.h>
int main(void)
{ wunsigned int i = 0x003:77f£f;
unsigned char *p;
int j;
p = (unsigned char *)&i;
for (j = 0; j < 4; j++)
printf ("Byte %d: %2x\n", j, p[jl);

4 N\
Byte Order Example 2 ﬁg
Note' .section ".data"
. foo: .word 1
Flawed code; uses “b”
instructions to load from oCEEE o
a four-byte memory area oA
ldrb wl, [x0]
AARCH64 is little
endian, so what will be
the value in x1?
What would be the value
in x1 if AARCH64 were
big endian?
62/

*3/22/20

}
Byte 0: ff Byte 0: 00
Qutput on a ’
Iittlependian Byte 1177 Ogtput qna Byte 1: 33
(Byte 2: 33 Dbig-endian Byte 2: 77
machine machine
Byte 3: 00 Byte 3: ff
61/
61
e N
Byte Order Example 3 & v;
. .section ".data"
NOte- foo: .byte 1
Flawed code; uses word
instructions to manipulate oCEEIE Ha
a one-byte memory area SR —-
1ldr wl, [x0]
What would happen?
63/

63

62

