

1 2

4 5

7

10 11 12

13 14

Resources in Assignment 3

Who allocates and frees the key strings in symbol table?

Reasonable options:

(1) Client allocates and frees strings

• SymTable_put() does not create copy of given string

• SymTable_remove() does not free the string

• SymTable_free() does not free remaining strings

(2) SymTable_boject allocates and frees strings

• SymTable_put() creates copy of given string

• SymTable_remove() frees the string

• SymTable_free() frees all remaining strings

Our choice: (2)

• With option (1) client could corrupt the SymTable object (as described in last lecture)

16 17 18

19 20 21

22 23 24

▶ iClicker Question

Q: Assignment 3's interface has both SymTable_get() (which returns NULL if the key is not found) and SymTable contains() — is the latter necessary?

A. No – should be eliminated

B. Yes - necessary for functionality

C. Yes - necessary for efficiency

D. Yes - necessary for clarity

Clicker Question
 Q: Assignment 3 has SymTable_hash() defined in implementation, but not interface. Is this good design?
 A. No – should be in interface to enable functionality
 B. No – should be in interface to enable clarity
 C. Yes – should remain an implementation detail

Agenda

A good module:

• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

26 28 29

A well-designed module detects and handles/reports errors A module should: • Detect errors • Handle errors if it can; otherwise... • Report errors to its clients • A module often cannot assume what error-handling action its clients prefer

30 31 32

33 34 35

Programmer Errors

(2) Programmer errors

• Errors made by a programmer

• Errors that "should never happen"

• Example: pointer parameter should not be NULL, but is

• For now, use assert to detect and handle

• More info later in the course

The distinction sometimes is unclear

• Example: Write to file fails because disk is full

• Example: Divisor argument to div () is 0

Default: user error

36 37 38

39 40 4

42 43 44

45 46 47

48 49 50

51 52 53

54