
•3/2/20

•1

COS 217 Midterm: Wed Mar 11
When/where?

• In lecture, W 3/11; Friend 101 (P0{1,2,3,5,6}) and CS 105 (P04)

What?
• C programming, including string and stdio features we’ve seen
• Numeric representations corresponding to C types we’ve seen
• Programming in the large: modularity, building, testing, debugging
• Readings, lectures, precepts: through this week
• Assignments 0-3.

How?
• Mixture of T/F, MC, short-answer, and code snippet writing
• Closed book and notes
• No electronic anything
• Interfaces of relevant functions will be provided

Old exams are posted on schedule page 1

1

2

Modules and Interfaces

Princeton University
Computer Science 217: Introduction to Programming Systems

2

The material for this lecture is drawn, in part, from
The Practice of Programming (Kernighan & Pike) Chapter 4

2

Goals of this Lecture

Help you learn:
• How to create high quality modules in C

Why?
• Abstraction is a powerful (the only?) technique available for

understanding large, complex systems
• A software engineer knows how to find the abstractions

in a large program
• A software engineer knows how to convey a large program’s

abstractions via its modularity

33

3

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

4

4

5

Encapsulation

A well-designed module encapsulates data
• An interface should hide implementation details
• A module should use its functions to encapsulate its data
• A module should not allow clients to manipulate the data directly

Why?
• Clarity: Encourages abstraction
• Security: Clients cannot corrupt object by changing its data in

unintended ways
• Flexibility: Allows implementation to change – even the data

structure – without affecting clients

5

Abstract Data Type (ADT)
A data type has a representation

and some operations:

struct Node {
int key;
struct Node *next;

};

struct List {
struct Node *first;

};

struct List * new(void) {
struct List *p;
p=(struct List *)malloc (sizeof *p);
assert (p!=NULL);
p->first = NULL;
return p;

}

void insert (struct list *p, int key) {
struct Node *n;
n = (struct Node *)malloc(sizeof *n);
assert (n!=NULL);
n->key=key; n->next=p->first; p->first=n;

} 6

struct List;

struct List * new(void);
void insert (struct list *p, int key);
void concat (struct list *p,

struct list *q);
int nth_key (struct list *p, int n);

An abstract data type has a
hidden representation;
all “client” code must access
the type through its interface:

6

•3/2/20

•2

Barbara Liskov, a pioneer in CS

"An abstract data type defines a class of abstract
objects which is completely characterized by the
operations available on those objects. This means
that an abstract data type can be defined by defining
the characterizing operations for that type."

Barbara Liskov and Stephen Zilles.
"Programming with Abstract Data Types."
ACM SIGPLAN Conference on Very
High Level Languages, April 1974.

7

Turing Award winner 2008:
“For contributions to practical and
theoretical foundations of programming
language and system design, especially
related to data abstraction, fault tolerance,
and distributed computing.”

7

list_linked.c
#include "list.h"

struct List * new(void) {
struct List *p = (struct List *)malloc(sizeof(*p));
p->len = 0; p->list=NULL;
return p;

}

void insert (struct List *p, int key) {...}

void concat (struct List *p, *q) { ... }

int nth_key (struct List *p, int n) { ... }

#include "list.h"

int f(void) {
struct List *p, *q;
p = new();
q = new();
insert (p,6);
insert (p,7);
insert (q,5);
concat (p,q);
concat (q,p);
return nth_key(q,1);

}

client.c

Encapsulation with ADTs (wrong!)
list.h

struct List {int len; int* list;};

struct List * new(void);
void insert (struct List *p, int key);
void concat (struct List *p,

struct List *q);
int nth_key (struct List *p, int n);

If you put the
representation here,

then it’s not an
abstract data type,
it’s just a data type.

8

8

list_linked.c
#include "list.h"

struct List * new(void) {
struct List *p = (struct List *)malloc(sizeof(*p));
p->first=NULL;
return p;

}

void insert (struct List *p, int key) {...}

void concat (struct List *p, *q) { ... }

int nth_key (struct List *p, int n) { ... }

#include "list.h"

int f(void) {
struct List *p, *q;
p = new();
q = new();
insert (p,6);
insert (p,7);
insert (q,5);
concat (p,q);
concat (q,p);
return nth_key(q,1);

}

client.c

Encapsulation with ADTs (wrong!)
list.h

struct Node {int key; struct Node *next;};
struct List {struct Node *first;};

struct List * new(void);
void insert (struct List *p, int key);
void concat (struct List *p,

struct List *q);
int nth_key (struct List *p, int n);

If you put the
representation here,

then it’s not an
abstract data type,
it’s just a data type.

9

9

Encapsulation with ADTs (right!)
list.h

#include "list.h"

int f(void) {
struct List *p, *q;
p = new();
q = new();
insert (p,6);
insert (p,7);
insert (q,5);
concat (p,q);
concat (q,p);
return nth_key(q,1);

}

client.c list_linked.c
#include "list.h"

struct Node {int key; struct Node *next;};
struct List {struct Node *first;};

struct List * new(void) {
struct List *p = (struct List *)malloc(sizeof(*p));
p->first=NULL;
return p;

}

void insert (struct List *p, int key) {...}

void concat (struct List *p, *q) { ... }

int nth_key (struct List *p, int n) { ... } 10

struct List;

struct List * new(void);
void insert (struct List *p, int key);
void concat (struct List *p,

struct List *q);
int nth_key (struct List *p, int n);

Including only the
declaration in header

file enforces the
abstraction: it keeps

clients from
accessing fields of
the struct, allowing
implementation to

change

10

This is OK! Client programs relying on unspecified
behavior might break with a new implementation.

Doctor, it
hurts when
I do this

Then don’t
do that!

Specifications
If you can’t see the representation (or
the implementations of insert,
concat, nth_key), then how are
you supposed to know what they do?

struct List;

struct List * new(void);
void insert (struct list *p, int key);
void concat (struct list *p,

struct list *q);
int nth_key (struct list *p, int n);

A List p represents a sequence of integers σ.

Operation new() returns a list p representing the empty sequence.

Operation insert(p, i), if p represents σ, causes p to now represent i ∙σ.

Operation concat(p, q), if p represents σ1 and q represents σ2,
causes p to represent σ1∙σ2 and leaves q representing σ2.

Operation nth_key(p, n), if p represents σ1∙i ∙σ2 where the length of σ1 is n,
returns i ; otherwise (if the length of the string represented by p is ≤ n),
it returns an arbitrary integer.

11

11

Reasoning About Client Code

int f(void) {
struct List *p, *q;
p = new();
q = new();
insert (p,6);
insert (p,7);
insert (q,5);
concat (p,q);
concat (q,p);
return nth_key(q,1);

}

p:[]
p:[] q:[]
p:[6] q:[]
p:[7,6] q:[]
p:[7,6] q:[5]
p:[7,6,5] q:[5]
p:[7,6,5] q:[5,7,6,5]
return 7

12

struct List;

struct List * new(void);
void insert (struct list *p, int key);
void concat (struct list *p,

struct list *q);
int nth_key (struct list *p, int n);

List of specifications allows for
reasoning about the effects of
client code.

12

•3/2/20

•3

typedef struct List *List_T;

List_T new(void);

void insert (List_T p, int key);

void concat (List_T p, List_T q);

int nth_key (List_T p, int n);

void free_list (List_T p);

13

C is not inherently an object-oriented language, but can use
language features to encourage object-oriented thinking

• Interface provides List_T abbreviation for client
• Interface encourages client to think of objects (not structures)

and object references (not pointers to structures)
• Client still cannot access data directly; data is “opaque” to the client

Object-Oriented Thinking

"Opaque" pointer type

13

iClicker Question
Q: Is a string, as used by the <string.h> module an ADT?

A. Yes – clients can’t see the implementation of strcpy, etc.

B. Yes – clients can’t see the representation of strings.

C. No – clients can see the implementation of strcpy, etc.

D. No – clients can see the representation of strings.

E. No – strings are not a datatype.

14

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

15

15

16

Resource Management
A well-designed module manages resources consistently

• A module should free a resource if and only if the module has
allocated that resource

• Examples
• Object allocates memory« object frees memory
• Object opens file « object closes file

Why?
• Allocating and freeing resources at different levels is error-prone

• Forget to free memory Þmemory leak
• Forget to allocate memory Þ dangling pointer, seg fault
• Forget to close file Þ inefficient use of a limited resource
• Forget to open file Þ dangling pointer, seg fault

16

17

Resource Management in stdio

fopen() allocates memory for FILE struct,
obtains file descriptor from OS

fclose() frees memory associated with FILE struct,
releases file descriptor back to OS

17

18

Resources in Assignment 3
Who allocates and frees the key strings in symbol table?

Reasonable options:
(1) Client allocates and frees strings

• SymTable_put() does not create copy of given string
• SymTable_remove() does not free the string
• SymTable_free() does not free remaining strings

(2) SymTable object allocates and frees strings
• SymTable_put() creates copy of given string
• SymTable_remove() frees the string
• SymTable_free() frees all remaining strings

Our choice: (2)
• With option (1) client could corrupt the SymTable object

(as described in last lecture)

18

•3/2/20

•4

19

Passing Resource Ownership
Violations of expected resource ownership should be
noted explicitly in function comments

somefile.h

…

void *f(void);

/* …
This function allocates memory for
the returned object. You (the caller)

own that memory, and so are responsible
for freeing it when you no longer
need it. */

…

19

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

20

20

21

Consistency

A well-designed module is consistent
• A function's name should indicate its module

• Facilitates maintenance programming
• Programmer can find functions more quickly

• Reduces likelihood of name collisions
• From different programmers, different software vendors, etc.

• A module's functions should use a consistent parameter order
• Facilitates writing client code

21

22

Consistency in string.h
string

/* string.h */

size_t strlen(const char *s);
char *strcpy(char *dest, const char *src);
char *strncpy(char *dest, const char *src, size_t n);

char *strcat(char *dest, const char *src);
char *strncat(char *dest, const char *src, size_t n);
int strcmp(const char *s1, const char *s2);

int strncmp(const char *s1, const char *s2, size_t n);
char *strstr(const char *haystack, const char *needle);
void *memcpy(void *dest, const void *src, size_t n);

int memcmp(const void *s1, const void *s2, size_t n);
…

Are function names consistent?

Is parameter order consistent?

22

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

23

23

24

Minimization

A well-designed module has a minimal interface
• Function declaration should be in a module's interface if and only if:

• The function is necessary for functionality, or
• The function is necessary for clarity of client code

Why?
• More functions ⇒ higher learning costs, higher maintenance costs

24

•3/2/20

•5

iClicker Question
Q: Assignment 3's interface has both SymTable_get()

(which returns NULL if the key is not found) and
SymTable_contains() – is the latter necessary?

A. No – should be eliminated

B. Yes – necessary for functionality

C. Yes – necessary for efficiency

D. Yes – necessary for clarity

26

iClicker Question
Q: Assignment 3 has SymTable_hash() defined in

implementation, but not interface. Is this good design?

A. No – should be in interface to enable functionality

B. No – should be in interface to enable clarity

C. Yes – should remain an implementation detail

28

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

29

29

30

Error Handling

A well-designed module detects and handles/reports errors

A module should:
• Detect errors
• Handle errors if it can; otherwise…
• Report errors to its clients

• A module often cannot assume what error-handling action its
clients prefer

30

31

Handling Errors in C

C options for detecting errors
• if statement
• assertmacro

C options for handling errors
• Write message to stderr

• Impossible in many embedded applications
• Recover and proceed

• Sometimes impossible
• Abort process

• Often undesirable

31

32

Reporting Errors in C
C options for reporting errors to client (calling function)

• Set global variable?

• Easy for client to forget to check
• Bad for multi-threaded programming

int successful;
…
int div(int dividend, int divisor)
{ if (divisor == 0)

{ successful = 0;
return 0;

}
successful = 1;
return dividend / divisor;

}
…
quo = div(5, 3);
if (! successful)

/* Handle the error */

32

•3/2/20

•6

33

Reporting Errors in C
C options for reporting errors to client (calling function)

• Use function return value?

Awkward if return value has some other natural purpose

int div(int dividend, int divisor, int *quotient)
{ if (divisor == 0)

return 0;
…
*quotient = dividend / divisor;
return 1;

}
…
successful = div(5, 3, &quo);
if (! successful)

/* Handle the error */

33

34

Reporting Errors in C
C options for reporting errors to client (calling function)

• Use call-by-reference parameter?

Awkward for client; must pass additional argument

int div(int dividend, int divisor, int *successful)
{ if (divisor == 0)

{ *successful = 0;
return 0;

}
*successful = 1;
return dividend / divisor;

}
…
quo = div(5, 3, &successful);
if (! successful)

/* Handle the error */

34

35

Reporting Errors in C

C options for reporting errors to client (calling function)
• Call assertmacro?

• Asserts could be disabled
• Error terminates the process!

int div(int dividend, int divisor)
{ assert(divisor != 0);

return dividend / divisor;
}
…
quo = div(5, 3);

35

36

Reporting Errors in C

C options for reporting errors to client (calling function)

• No option is ideal

What option does
Java provide?

36

37

User Errors
Our recommendation: Distinguish between…

(1) User errors
• Errors made by human user
• Errors that “could happen”

• Example: Bad data in stdin
• Example: Too much data in stdin
• Example: Bad value of command-line argument

• Use if statement to detect
• Handle immediately if possible, or…
• Report to client via return value or call-by-reference parameter

• Don’t use global variable

37

38

Programmer Errors
(2) Programmer errors

• Errors made by a programmer
• Errors that “should never happen”

• Example: pointer parameter should not be NULL, but is

• For now, use assert to detect and handle
• More info later in the course

The distinction sometimes is unclear
• Example: Write to file fails because disk is full
• Example: Divisor argument to div() is 0

Default: user error

38

•3/2/20

•7

39

Error Handling in List

add assert(p) in each of the functions.... try to protect against bad clients

void List_insert (List_T p, int key) {
assert(p);
. . .

}

typedef struct List *List_T;

List_T List_new(void);

void List_insert (List_T p, int key);

void List_concat (List_T p, List_T q);

int List_nth_key (List_T p, int n);

void List_free (List_T p);

39

40

Error Handling in List
typedef struct List *List_T;

List_T List_new(void);

void List_insert (List_T p, int key);

void List_concat (List_T p, List_T q);

int List_nth_key (List_T p, int n);

void List_free (List_T p);

Operation nth_key(p,n), if p represents
σ1∙i ∙σ2 where the length of σ1 is n,
returns i ; otherwise (if the length of
the string represented by p is ≤ n),
returns an arbitrary integer.

• This error-handling in List_nth_key is a bit lame.
• How to fix it? Some choices:

• int List_nth_key (List_T p, int n, int *error);

• Or, perhaps better: add an interface function,
int List_length (List_T p); and then,

Operation nth_key(p,n), if p represents σ1∙i ∙σ2 where the length of σ1
is n, returns i ; otherwise (if the length of the string represented by
p is ≤n), it fails with an assertion failure or abort().

40

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

41

41

42

Establishing Contracts
A well-designed module establishes contracts

• A module should establish contracts with its clients
• Contracts should describe what each function does, esp:

• Meanings of parameters
• Work performed
• Meaning of return value
• Side effects

Why?
• Facilitates cooperation between multiple programmers
• Assigns blame to contract violators!!!

• If your functions have precise contracts and implement them
correctly, then the bug must be in someone else’s code!!!

How?
• Comments in module interface

42

43

Contracts in List

Comment defines contract:
• Meaning of function’s parameters

• p is the list to be operated on; n is the index of an element
• Obligations of caller

• make sure n is in range; (implicit) make sure p is a valid list
• Work performed

• Return the n’th element.
• Meaning of return value
• Side effects (none, by default)

/* list.h */

/* Return the n’th element of the list p,
if it exists. Otherwise (if n is
negative or >= the length of the list),

abort the program. */

int List_nth_key (List_T p, int n);

43

44

Contracts in List

Comment defines contract:
• Meaning of function’s parameters

• p is the list to be queried; n is the index of an element; success is an error flag

• Obligations of caller
• (implicit) make sure p is a valid List

• Work performed
• Return the n’th element; set success appropriately

• Meaning of return value
• Side effects: set success

/* list.h */

/* If 0 <= n < length(p), return the n’th element of
the list p and set success to 1. Otherwise (if n is
out of range) return 0 and set success to 0. */

int List_nth_key (List_T p, int n, int *success);

44

•3/2/20

•8

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

45

45

46

Strong Cohesion

A well-designed module has strong cohesion
• A module's functions should be strongly related to each other

Why?
• Strong cohesion facilitates abstraction

46

47

Strong Cohesion Examples
List

(+) All functions are related to the encapsulated data

string.h
(+) Most functions are related to string handling
(-) Some functions are not related to string handling:

memcpy(), memcmp(), …
(+) But those functions are similar to string-handling functions

stdio.h
(+) Most functions are related to I/O
(-) Some functions don’t do I/O: sprintf(), sscanf()
(+) But those functions are similar to I/O functions

SymTable
(+) All functions are related to the encapsulated data

47

Agenda

A good module:
• Encapsulates data
• Manages resources
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion (if time)
• Has weak coupling (if time)

48

48

Weak Coupling

A well-designed module has weak coupling
• Module should be weakly connected to other modules in program
• Interaction within modules should be more intense than interaction

among modules

Why? Theoretical observations
• Maintenance: Weak coupling makes program easier to modify
• Reuse: Weak coupling facilitates reuse of modules

Why? Empirical evidence
• Empirically, modules that are weakly coupled have fewer bugs

Examples (different from previous)…
49

49

50

Weak Coupling Example 1
Design-time coupling

f()

move()

getLat()
getLon()
getAlt()
setLat()

Simulator

Airplane

• Simulator module calls many
functions in Airplane

• Strong design-time coupling

f()

Simulator

• Simulator module calls few
functions in Airplane

• Weak design-time coupling

Function call

setLon()
setAlt()

getLat()
getLon()
getAlt()
setLat()

Airplane

setLon()
setAlt()
move()

50

•3/2/20

•9

51

Weak Coupling Example 2
Run-time coupling

f()

sort()

getN()

setN()

Client Collection

• Client module makes many
calls to Collection module

• Strong run-time coupling

f()

sort()

getN()

setN()

Client
Collection

• Client module makes few
calls to Collection module

• Weak run-time coupling

One
function call

Many
function calls

51

52

Weak Coupling Example 3
Maintenance-time coupling

f2() f3()

Client MyModule

• Maintenance programmer
changes Client and MyModule
together frequently

• Strong maintenance-time
coupling

f2()

f3()

Client MyModule

• Maintenance programmer
changes Client and MyModule
together infrequently

• Weak maintenance-time
coupling

f1() f1()

Changed together often

52

53

Achieving Weak Coupling

Achieving weak coupling could involve refactoring code:

• Move code from client to module (shown)
• Move code from module to client (not shown)
• Move code from client and module to a new module (not shown)

53

Summary

A good module:
• Encapsulates data
• Is consistent
• Has a minimal interface
• Detects and handles/reports errors
• Establishes contracts
• Has strong cohesion
• Has weak coupling

54

54

