
2/10/20

1

1

Data Types in C

Princeton University
Computer Science 217: Introduction to Programming Systems

1

Goals of C

2

Designers wanted C to: But also:

Support system programming Support application programming

Be low-level Be portable
Be easy for people to handle Be easy for computers to handle

• Conflicting goals on multiple dimensions!
• Result: different design decisions than Java

2

3

Primitive Data Types

• integer data types
• floating-point data types
• pointer data types
• no character data type (use small integer types instead)
• no character string data type (use arrays of small ints instead)
• no logical or boolean data types (use integers instead)

For “under the hood” details,
look back at the

“number systems” lecture
from last week

3

4

Integer Data Types
Integer types of various sizes: signed char, short, int, long

• char is 1 byte
• Number of bits per byte is unspecified!

(but in the 21st century, pretty safe to assume it’s 8)
• Sizes of other integer types not fully specified but constrained:

• int was intended to be “natural word size”
• 2 ≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long)

On ArmLab:
• Natural word size: 8 bytes (“64-bit machine”)
• char: 1 byte
• short: 2 bytes
• int: 4 bytes (compatibility with widespread 32-bit code)
• long: 8 bytes What decisions did the

designers of Java make?

4

Integer Literals

• Decimal: 123
• Octal: 0173 = 123
• Hexadecimal: 0x7B = 123
• Use "L" suffix to indicate long literal
• No suffix to indicate short literal; instead must use cast

Examples
• int: 123, 0173, 0x7B
• long: 123L, 0173L, 0x7BL
• short: (short)123, (short)0173, (short)0x7B

5

5

6

Unsigned Integer Data Types

unsigned types: unsigned char, unsigned short,
unsigned int, and unsigned long
• Holds only non-negative integers
• Conversion rules for mixed-type expressions

(Generally, mixing signed and unsigned converts to unsigned)
• See King book Section 7.4 for details

6

2/10/20

2

7

Unsigned Integer Literals
Default is signed

• Use "U" suffix to indicate unsigned literal

Examples
• unsigned int:

• 123U, 0173U, 0x7BU
• 123, 0173, 0x7B will work just fine in practice; technically

there is an implicit cast from signed to unsigned, but in these
cases it shouldn’t make a difference.

• unsigned long:
• 123UL, 0173UL, 0x7BUL

• unsigned short:
• (unsigned short)123, (unsigned short)0173,
(unsigned short)0x7B

7

8

“Character” Data Type
The C char type

• char is designed to hold an ASCII character
• And should be used when you’re dealing with characters:

character-manipulation functions we’ve seen (such as toupper)
take and return char

• char might be signed (-128..127) or unsigned (0..255)
• But since 0 ≤ ASCII ≤ 127 it doesn’t really matter

• If you want a 1-byte type for calculation, you might (should?) specify
signed char or unsigned char

8

9

Character Literals
Single quote syntax: 'a'

Use backslash (the escape character) to express
special characters

• Examples (with numeric equivalents in ASCII):

'a' the a character (97, 01100001B, 61H)
'\141' the a character, octal form
'\x61' the a character, hexadecimal form
'b' the b character (98, 01100010B, 62H)
'A' the A character (65, 01000001B, 41H)
'B' the B character (66, 01000010B, 42H)
'\0' the null character (0, 00000000B, 0H)
'0' the zero character (48, 00110000B, 30H)
'1' the one character (49, 00110001B, 31H)
'\n' the newline character (10, 00001010B, AH)
'\t' the horizontal tab character (9, 00001001B, 9H)
'\\' the backslash character (92, 01011100B, 5CH)
'\'' the single quote character (96, 01100000B, 60H)

9

10

Strings and String Literals

Issue: How should C represent strings and
string literals?

Rationale:
• Natural to represent a string as a sequence of contiguous chars
• How to know where char sequence ends?

• Store length together with char sequence?
• Store special “sentinel” char after char sequence?

10

11

Strings and String Literals
Decisions

• Adopt a convention
• String is a sequence of contiguous chars
• String is terminated with null char (‘\0’)

• Use double-quote syntax (e.g., "hello") to represent a string literal
• Provide no other language features for handling strings

• Delegate string handling to standard library functions

Examples
• 'a' is a char literal
• "abcd" is a string literal
• "a" is a string literal

How many
bytes?

What decisions did the
designers of Java make?

11

Arrays of characters

char s[10] = {'H','e','l','l','o',0};
(or, equivalently)

char s[10] = "Hello";

char *p = s+2;

printf("Je%s!", p); prints Jello!

H e l l o \0 ? ? ? ?s

p

p is a pointer: it
contains the address
of another variable

12

2/10/20

3

Unicode
Back in 1970s, English was
the only language in the
world[citation needed], so we all
used this alphabet:

ASCII: American Standard
Code for Information
Interchange

In the 21st century, it turns
out that there are other
people and languages out
there, so we need:

13

14

Modern Unicode
When Java was designed, Unicode fit into 16 bits,
so char in Java was 16 bits long. Then this happened:

https://xkcd.com/1953/

14

15

Cultural Aside (comic -= 900)

https://xkcd.com/1053/

15

Unicode and UTF-8

Lots of characters in today’s Unicode
• 100,000+ defined, capacity for > 1 million

Can’t modify size of char in C

Solution: variable-length encoding (UTF-8)
• Standard ASCII characters use 1 byte
• Most Latin-based alphabets use 2 bytes
• Chinese, Japanese, Korean characters use 3 bytes
• Historic scripts, mathematical symbols, and emoji use 4 bytes
• This won’t be on the exam!

16

17

Logical Data Types

No separate logical or Boolean data type

Represent logical data using type char or int
• Or any integer type
• Or any primitive type!

Conventions:
• Statements (if, while, etc.) use 0 ⇒ FALSE, ≠0 ⇒ TRUE
• Relational operators (<, >, etc.) and logical operators (!, &&, ||)

produce the result 0 or 1

17

18

Logical Data Type Shortcuts
Using integers to represent logical data permits shortcuts

It also permits some really bad code…

…
int i;
…
if (i) /* same as (i != 0) */

statement1;
else

statement2;
…

i = (1 != 2) + (3 > 4);

18

2/10/20

4

iClicker Question
Q: What is i set to in the following code?

A. 0

B. 1

C. 2

D. 3

E. 4

i = (1 != 2) + (3 > 4);

19

20

Logical Data Type Dangers

The lack of a logical data type hampers
compiler's ability to detect some errors

…
int i;
…
i = 0;
…
if (i = 5)

statement1;
…

What happens
in Java?

What happens
in C?

20

21

Floating-Point Data Types
C specifies:

• Three floating-point data types:
float, double, and long double

• Sizes unspecified, but constrained:
sizeof(float) ≤ sizeof(double) ≤ sizeof(long double)

On ArmLab (and on pretty much any 21st-century computer
using the IEEE standard)
• float: 4 bytes
• double: 8 bytes

On ArmLab (but varying a lot across architecures)
• long double: 16 bytes

21

22

Floating-Point Literals
How to write a floating-point number?

• Either fixed-point or “scientific” notation
• Any literal that contains decimal point or "E" is floating-point
• The default floating-point type is double
• Append "F" to indicate float
• Append "L" to indicate long double

Examples
• double: 123.456, 1E-2, -1.23456E4
• float: 123.456F, 1E-2F, -1.23456E4F
• long double: 123.456L, 1E-2L, -1.23456E4L

22

Data Types Summary: C vs. Java
Java only

• boolean, byte

C only
• unsigned char, unsigned short, unsigned int,
unsigned long, long double

Sizes
• Java: Sizes of all types are specified, and portable
• C: Sizes of all types except char are system-dependent

Type char
• Java: char is 2 bytes (to hold all 1995-era Unicode values)
• C: char is 1 byte (to hold all ASCII in non-negative signed char)

23

23

