
1

DB indexing

COS 518: Advanced Computer Systems
Lecture 7

Michael Freedman
2

Basic row-based storage

Id
BIGINT

Name
CHAR(32)

Age
INT

Gender
SMALLINT

Birthday
DATE

8 32 4 2 4 = 50

3

Basic row-based storage

Id
BIGINT

Name
CHAR(32)

Age
INT

Gender
SMALLINT

Birthday
DATE

8 32 4 2 4 = 50

Id
BIGINT

Name
CHAR(32)

Age
INT

Gender
SMALLINT

Birthday
DATE

Id
BIGINT

Name
CHAR(32)

Age
INT

Gender
SMALLINT

Birthday
DATE

Id
BIGINT

Name
CHAR(32)

Age
INT

Gender
SMALLINT

Birthday
DATE

0

50

100

150

• Types of queries
– Exact match: id = 139856151

– Predicate scans: All entries with age > 80

• Option 1: Full scan

• Option 2: Use an index!

4

How to efficiently find data?

2

• Easy to do in memory

• Except how do you store on disk?
– Let’s say 1M entries

– 20 levels of a binary tree
– Don’t want 20 random disk seeks (say, ~200ms)

5

Use a balanced binary tree?

• Can collocate many pointers on disk
– Databases typically read data in “page”

granularities (4-16KB per page)

• But keeping a binary tree “balanced” requires
many rotations (e.g., red-black tree rotations)

6

Strawman: Leverage locality on disk

• Each tree node sized for disk page
• Internal nodes maintain pointers (to subtrees) and keys
• Keys serve as bookends to subtrees
• Keys also include pointer to underlying row in DB
• Typically maintain sparse nodes (say, 50% empty) for cheaper

insertion/deletion 7

B-Tree: Disk-aware lookup tree

• What if we could just store 2 pages in memory?

• Insert new keys in order: 10, 19, 11, 20, 13, 22, …

8

Challenge for randomized workloads

3

9

Insert throughput as F(table size)

10

Insert throughput as F(table size)

• Goal #1: High-throughput writes (inserts/updates/deletes)

• Goal #2: Support index size >> memory size

• Observation: Writes to disk should be batched for high
throughput (either SSD or HDD)

• Observation: Sorting/indexing in memory is fast

• Main insight: Don’t try to maintain single data structure with
in-place ordering

11

LSM Trees + LevelDB

• Goal #1: High-throughput writes (inserts/updates/deletes)

• Goal #2: Support index size >> memory size

• Observation: Writes to disk should be batched for high
throughput (either SSD or HDD)

• Observation: Sorting/indexing in memory is fast

• Main insight: Don’t try to maintain single data structure with
in-place ordering

12

LSM Trees + LevelDB

4

• Collect writes in memory
– Can maintain sorted list in memory

– Can update in-place (overwrite, delete, etc.)

• Disk is immutable
– Once written to disk, not modified in-place

– Queries will need to find all records and merge
– Deletes are simply “tombstone records”

13

Collect writes and batch in memory Spill From Memory To Disk

• As memory budget fills up, spill them to disk
– Write out entire sorted string table

– Write out a subtree, then remove and prune it in
memory

• Each dump forms a “run” ordered by write time

• SSTable: set of arbitrary, sorted key-value pairs

15

LSM Trees

• LSM Trees: Write to memory, then flush to disk

16

LSM Trees

• LSM Trees: Write to memory, then flush to disk

5

Problem & solution

• Index lookups can traverse many SSIndexes
– Esp. with range scan vs. exact-match lookup

– Other optimizations trade-off memory for additional disk
lookups, e.g., bloom filter vs. SSIndex

• Idea
– Merge and compact SSTables in background

Log-structured MERGE Tree
• Merge updates disk data structures in background

– Input: K overlapping sorted SSTables from A-Z at level L
– Output: Disjoint sorted SSTables files at level L+1

• Compaction also occurs as part of the merges
– Merges multiple updates into one
– Deletes tombstoned records
– Recovers storage from merged updates and deleted values

• Can occur very efficiently by sequential reads from each
SSTable and writing to output files (why? Hint: all sorted))

LSM Tree in Level DB

