
1

Concurrency control

(OCC and MVCC)

COS 518: Advanced Computer Systems
Lecture 6

Michael Freedman

Q: What if access patterns
rarely, if ever, conflict?

2

• Goal: Low overhead for non-conflicting txns

• Assume success!
– Process transaction as if would succeed

– Check for serializability only at commit time
– If fails, abort transaction

• Optimistic Concurrency Control (OCC)
– Higher performance when few conflicts vs. locking
– Lower performance when many conflicts vs. locking

3

Be optimistic!
• Begin: Record timestamp marking the transaction’s beginning

• Modify phase:

– Txn can read values of committed data items

– Updates only to local copies (versions) of items (in db cache)

• Validate phase

• Commit phase

– If validates, transaction’s updates applied to DB

– Otherwise, transaction restarted

– Care must be taken to avoid “TOCTTOU” issues
4

OCC: Three-phase approach

2

5

OCC: Why validation is necessary

txn
coord O

Q

P
When commits txn updates,

create new versions at
some timestamp t

• New txn creates shadow
copies of P and Q

• P and Q’s copies at
inconsistent state

txn
coord

• Transaction is about to commit.
System must ensure:

– Initial consistency: Versions of accessed objects
at start consistent

– No conflicting concurrency: No other txn has
committed an operation at object that conflicts
with one of this txn’s invocations

6

OCC: Validate Phase

• Validation needed by transaction T to commit:

• For all other txns O either committed or in validation
phase, one of following holds:

A. O completes commit before T starts modify

B. T starts commit after O completes commit,
and ReadSet T and WriteSet O are disjoint

C. Both ReadSet T and WriteSet T are disjoint from
WriteSet O, and O completes modify phase.

• When validating T, first check (A), then (B), then (C).
If all fail, validation fails and T aborted 7

OCC: Validate Phase
• Provides semantics as if only one transaction

was running on DB at time, in serial order

+ Real-time guarantees

• 2PL: Pessimistically get all the locks first

• OCC: Optimistically create copies, but then
recheck all read + written items before commit

8

2PL & OCC = strict serialization

3

• Provides semantics as if only one transaction was
running on DB at time, in serial order

+ Real-time guarantees

• 2PL: Pessimistically get all the locks first

• OCC: Optimistically create copies, but then
recheck all read + written items before commit

9

2PL & OCC = strict serialization

Multi-version
concurrency control

Generalize use of multiple versions of objects

10

• Maintain multiple versions of objects, each with own
timestamp. Allocate correct version to reads.

• Prior example of MVCC:

11

Multi-version concurrency control
• Maintain multiple versions of objects, each with own

timestamp. Allocate correct version to reads.

• Unlike 2PL/OCC, reads never rejected

• Occasionally run garbage collection to clean up

12

Multi-version concurrency control

4

• Split transaction into read set and write set
– All reads execute as if one “snapshot”

– All writes execute as if one later “snapshot”

• Yields snapshot isolation < serializability

13

MVCC Intuition
• Intuition: Bag of marbles: ½ white, ½ black

• Transactions:
– T1: Change all white marbles to black marbles
– T2: Change all black marbles to white marbles

• Serializability (2PL, OCC)
– T1 → T2 or T2 → T1
– In either case, bag is either ALL white or ALL black

• Snapshot isolation (MVCC)
– T1 → T2 or T2 → T1 or T1 || T2
– Bag is ALL white, ALL black, or ½ white ½ black

14

Serializability vs. Snapshot isolation

• Transactions are assigned timestamps, which may
get assigned to objects those txns read/write

• Every object version OV has both read and write TS

– ReadTS: Largest timestamp of txn that reads OV

– WriteTS: Timestamp of txn that wrote OV

15

Timestamps in MVCC

• Perform write of object O or abort if conflicting:
– Find OV s.t. max { WriteTS(OV) | WriteTS(OV) <= TS(T) }
– # Abort if another T’ exists and has read O after T
– If ReadTS(OV) > TS(T)

• Abort and roll-back T
– Else

• Create new version OW

• Set ReadTS(OW) = WriteTS(OW) = TS(T)
16

Executing transaction T in MVCC
• Find version of object O to read:

– # Determine the last version written before read snapshot time
– Find OV s.t. max { WriteTS(OV) | WriteTS(OV) <= TS(T) }
– ReadTS(OV) = max(TS(T), ReadTS(OV))
– Return OV to T

5

Distributed Transactions

25 26

Consider partitioned data over servers

O

P

Q

• Why not just use 2PL?
– Grab locks over entire read and write set

– Perform writes

– Release locks (at commit time)

L

L

L

U

U

U

R

R W

W

27

Consider partitioned data over servers

O

P

Q

• How do you get serializability?

– On single machine, single COMMIT op in the WAL

– In distributed setting, assign global timestamp to txn
(at sometime after lock acquisition and before commit)

• Centralized txn manager
• Distributed consensus on timestamp (not all ops)

L

L

L

U

U

U

R

R W

W

28

Strawman: Consensus per txn group?

O

P

Q

L

L

L

U

U

U

R

R W

W

R

S

• Single Lamport clock, consensus per group?
– Linearizability composes!
– But doesn’t solve concurrent, non-overlapping txn problem

