
1

Transactions:  ACID, 
Concurrency control (2PL)

Intro to distributed txns

COS 518: Advanced Computer Systems
Lecture 5

Michael Freedman

• Definition:A unit of work:
– May consist of multiple data accesses or updates
– Must commit or abort as a single atomic unit

• Transactions can either commit, or abort
– When commit, all updates performed on database 

are made permanent, visible to other transactions
– When abort, database restored to a state such 

that the aborting transaction never executed

2

The transaction

3

Defining properties of transactions
• Atomicity: Either all constituent operations of the 

transaction complete successfully, or none do

• Consistency: Each transaction in isolation preserves 
a set of integrity constraints on the data

• Isolation: Transactions’ behavior not impacted by 
presence of other concurrent transactions

• Durability: The transaction’s effects survive failure 
of volatile (memory) or non-volatile (disk) storage

Goal #1: Handle failures
Atomicity and Durability

4



2

• Transfers $10 from account A to account B

5

Account transfer transaction

Txn transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

• Suppose $100 in A, $100 in B

• commit_tx starts commit protocol:

– write(A, $90) to disk 

– write(B, $110) to disk

• What happens if system crash after first write, but 
before second write?
– After recovery: Partial writes, money is lost

6

Problem Txn transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

Lack atomicity in the presence of failures

• Log: A sequential file that stores information about 
transactions and system state
– Resides in separate, non-volatile storage

• One entry in the log for each update, commit, abort 
operation: called a log record

• Log record contains:
– Monotonic-increasing log sequence number (LSN)
– Old value (before image) of the item for undo
– New value (after image) of the item for redo

7

How to ensure atomicity?
• Ensures atomicity in the event of system crashes under 

no-force/steal buffer management

1. Force all log records pertaining to an updated page into the 
(non-volatile) log before any writes to page itself

2. A transaction is not considered committed until all log 
records (including commit record) are forced into log

8

Write-ahead Logging (WAL)



3

force_log_entry(A, old=$100, new=$90)

force_log_entry(B, old=$100, new=$110)

write(A, $90)

write(B, $110)

force_log_entry(commit)

• What if the commit log record size > the page size?

• How to ensure each log record is written atomically?

– Write a checksum of entire log entry

9

WAL example

Does not have 
to flush to disk

Goal #2: Concurrency control
Transaction Isolation

10

11

transaction sum(A, B):
begin_tx
a ß read(A)
b ß read(B)
print a + b
commit_tx

transaction transfer(A, B):
begin_tx
a ß read(A)
if a < 10 then abort_tx
else write(A, a−10)

b ß read(B)
write(B, b+10)
commit_tx

Two concurrent transactions

• Isolation: sum appears to happen either 
completely before or completely after transfer

• Schedule for transactions is an ordering of the 
operations performed by those transactions

12

Isolation between transactions



4

• Serial execution of transactions—transfer then sum:

transfer: rA wA rB wB ©

sum: rA rB ©

• Concurrent execution resulting in inconsistent retrieval, result 
differing from any serial execution:

transfer: rA wA rB wB ©

sum: rA rB ©

Time à
© = commit

13

Problem for concurrent execution: 
Inconsistent retrieval

debit credit

debit credit

Two operations from different transactions are 
conflicting if:
1. They read and write to the same data item
2. They write and write to the same data item

Two schedules are equivalent if:
1. They contain the same transactions and operations
2. They order all conflicting operations of non-

aborting transactions in the same way

14

Equivalence of schedules

• A schedule is conflict serializable if it is equivalent to 
some serial schedule

– i.e., non-conflicting operations can be reordered
to get a serial schedule

15

Serializability

• Locking-based approaches

• Strawman 1: Big Global Lock
– Acquire the lock when transaction starts

– Release the lock when transaction ends

16

How to ensure a serializable schedule?

Results in a serial transaction schedule 
at the cost of performance



5

• Locks maintained by transaction manager
– Transaction requests lock for a data item
– Transaction manager grants or denies lock

• Lock types
– Shared: Need to have before read object
– Exclusive: Need to have before write object

17

Locking

Shared (S) Exclusive (X)
Shared (S) Yes No
Exclusive (X) No No

• Strawman 2: Grab locks independently, for each data 
item (e.g., bank accounts A and B

transfer: �A rA wA �A �B rB wB �B  © 
sum: ◿A rA◺A ◿B rB ◺B ©

Time à
© = commit

� /◿ = eXclusive- / Shared-lock; � / ◺ = X- / S-unlock

18

How to ensure a serializable schedule?

Permits this non-serializable interleaving

• 2PL rule: Once a transaction has released a lock it is not 
allowed to obtain any other locks

• A growing phase when transaction acquires locks

• A shrinking phase when transaction releases locks

• In practice:
– Growing phase is the entire transaction

– Shrinking phase is during commit

19

Two-phase locking (2PL)
• 2PL rule: Once a transaction has released a lock it is 

not allowed to obtain any other locks

transfer: �A rA wA �A �B rB wB �B  © 

sum: ◿A rA◺A ◿B rB ◺B ©

Time à
© = commit

� /◿ = X- / S-lock; � / ◺ = X- / S-unlock
20

2PL allows only serializable schedules

2PL precludes this non-serializable interleaving



6

21

2PL and transaction concurrency

2PL permits this serializable, interleaved schedule

• 2PL rule: Once a transaction has released a lock it is 
not allowed to obtain any other locks

transfer: ◿A rA �A wA◿B rB �B wB�© 
sum: ◿A rA ◿B rB�©

Time à
© = commit

� /◿ = X- / S-lock; � / ◺ = X- / S-unlock 
� = release all locks

• Linearizability is a guarantee 
about single operations on 
single objects

– Once write completes, all 
later reads (by wall clock) 
should reflect that write

• Serializability is a guarantee 
about transactions over one 
or more objects

– Doesn’t impose real-time 
constraints

22

Serializability versus linearizability

• Linearizability + serializability = strict serializability
– Transaction behavior equivalent to some serial execution

• And that serial execution agrees with real-time

• Big Global Lock:  Results in a serial transaction 
schedule at the cost of performance

• Two-phase locking with finer-grain locks:
– Growing phase when txn acquires locks

– Shrinking phase when txnreleases locks (typically commit)
– Allows txn to execute concurrently, improvoingperformance

23

Recall: lock-based concurrency control

Distributed Transactions

24



7

25

Consider partitioned data over servers

O

P

Q

• Why not just use 2PL?
– Grab locks over entire read and write set

– Perform writes

– Release locks (at commit time)

L 

L 

L 

U 

U 

U 

R 

R   W 

W 

26

Consider partitioned data over servers

O

P

Q

• How do you get serializability?

– On single machine, single COMMIT op in the WAL

– In distributed setting, assign global timestamp to txn
(at sometime after lock acquisition and before commit)

• Centralized txn manager 
• Distributed consensus on timestamp (not all ops)

L 

L 

L 

U 

U 

U 

R 

R   W 

W 

27

Strawman:  Consensus per txn group?

O

P

Q

L 

L 

L 

U 

U 

U 

R 

R   W 

W 

R

S

• Single Lamport clock, consensus per group?
– Linearizability composes!
– But doesn’t solve concurrent, non-overlapping txn problem


