Replication and Consistency

Correct consistency model?

COS 518: Advanced Computer Systems
Lecture 3

Michael Freedman

¢ v

O

« Let's say Aand B send an op.

¢ AllreadersseeA—B?
¢ AllreadersseeB — A?
¢ Some see A— B and others B —-A?

Time and distributed systems

Just use time stamps?

» With multiple events, what happens first?

A shoots B B shoots A

A dies B dies

=

CL: 'ﬂ/\-)
it
P Time server,S

» Clients ask time server for time and adjust local
clock, based on response

» How to correct for the network latency?

RTT = Time_received — Time_sent

Time_local_new = Time_server + (RTT/ 2)

Is this sufficient?

+ Server latency due to load?
— If can measure: Time_local_new = Time_server + (RTT/2 +lag)

But what about asymmetric latency?

— RTT/2 not sufficient! Order by logical events,

not by wall clock time

What do we need to measure RTT?
— Requires no clock drift!

» What about “almost” concurrent events?
— Clocks have micro/milli-second precision

Correct consistency model? “Lazy replication”
7 i; o
\J

i JLJL

» Acknowledge writes immediately

DO

» Let's say Aand B send an op.

* AllreadersseeA—B?

« Allreaders see B — A ? » Lazily replicate elsewhere (push or pull)

+ Some see A— B and others B > A? » Eventual consistency: Dynamo, ...

“Eager replication”

OK

» On a write, immediately replicate elsewhere

» Wait until write committed to sufficient # of
nodes before acknowledging

Strong consistency

Consistency models

Strong Causal
consistency Consistency

e

Sequential Eventual
Consistency consistency

» Provide behavior of a single copy of object:
— Read should return the most recent write

— Subsequent reads should return same value, until next write

» Telephone intuition:
1. Alice updates Facebook post
2. Alice calls Bob on phone: “Check my Facebook post!”

3. Bob read’s Alice’s wall, sees her post

1"

Strong Consistency?

¥ >
write(A,1 k
I 2
0 —
0 —
. .4\ Zead(A)\

Phone call: Ensures happens-before relationship,
even through “out-of-band” communication

12

Strong Consistency?

\wrlte(A A) /
success
[:] >

] —>
v \ Zead(A)\

One cool trick: Delay responding to writes/ops
until properly committed

Strong Consistency? This is buggy!

\wrlte(A A) /
success
—p

[:] eager \/ : >

D replication - '
committed / \
read(A)
—

« Isn't sufficient to return value of third node:
It doesn’t know precisely when op is “globally” committed

* Instead: Need to actually order read operation 1

Strong Consistency!

write(A,1)
success

WK
§ VI \

[—
I

Order all operations via (1) leader, (2) consensus

22

Strong consistency = linearizability

* Linearizability (Herlihy and Wang 1991)
1. All servers execute all ops in some identical sequential order
2. Global ordering preserves each client’s own local ordering
3. Global ordering preserves real-time guarantee

» All ops receive global time-stamp using a sync’d clock
o Iftsop1(X) < tsopa(y), OP1(x) precedes OP2(y) in sequence

» Once write completes, all later reads (by wall-clock start time)
should return value of that write or value of later write.

» Once read returns particular value, all later reads should return
that value or value of later write.

Intuition: Real-time ordering

\wrlte(A A) /
SUCCESS
ﬂ

£\

committed q 4\ / read(A)¥

» Once write completes, all later reads (by wall-clock start time)
should return value of that write or value of later write.

000

* Once read returns particular value, all later reads should return

that value or value of later write. -

Weaker: Sequential consistency

+ Sequential = Linearizability — real-time ordering
1. All servers execute all ops in some identical sequential order

2. Global ordering preserves each client’s own local ordering

» With concurrent ops, “reordering” of ops (w.r.t. real-time ordering)
acceptable, but all servers must see same order

— e.g., linearizability cares about time
sequential consistency cares about program order

Sequential Consistency

\wrlte(A1) /
\ Zead(A)\
¢ —>

In example, system orders read(A) before write(A,1)

22

D
0

o

Valid Sequential Consistency?

P1: W(x)a P1: Wix)a

P2: W(x)b p2: Wix)b

P3: R(x)b R(x)a P3: R(x)b R(x)a
P4 R(x)b R(x)a P4: R{x)a R(x)b

* Why? Because P3 and P4 don’t agree on order of ops.
Doesn’t matter when events took place on diff machine,

as long as proc’s AGREE on order.

+ What if P1 did both W(x)a and W(x)b?
- Neither valid, as (a) doesn’t preserve local ordering

Even Weaker: Causal consistency

+ Potentially causally related operations?
— R(x) then W(x)
— R(x) then W(y), x # y

* Necessary condition: Potentially causally-related writes
must be seen by all processes in the same order

— Concurrent writes may be seen in a different order on
different machines

Causal consistency

P1: W(x)a W(x)c

P2: Rx)a Wb

P3: R()a R()c R()b
P4: R(x)a Rx)b R(x)c

+ Allowed with causal consistency, but not with sequential

* W(x)b and W(x)c are concurrent

— So all processes don’t see them in the same order

* P3 and P4 read the values ‘a’and ‘b’ in order as
potentially causally related. No ‘causality’ for ‘c’.

Causal consistency

P1: W(x)a W(x)c

P2: Rix)a Wb

P3: Rx)a Rx)c R{x)b
P4: Rx)a Rx)b R(x)c

* Why not sequentially consistent?
— P3 and P4 see W(x)b and W(x)c in different order.

» But fine for causal consistency

— Writes W(x)b and W(x)c are not causally dependent
+ Write after write has no dependencies

Causal consistency

P1: W(x)a

P2: R(x)a Wb

P3: Rb R()a
P4: R(x)a Rx)b

(=)

P1: W(x)a

P2: W(x)b

P3: Rx)b R)a
P4: Rx)a R)b

(b)
A: Violation: W(x)b potentially dependent on W(x)a

B: Correct. P2 doesn’t read value of a before W

Causal consistency

* Requires keeping track of which processes
have seen which writes

— Needs a dependency graph of which op is
dependent on which other ops

— ...or use vector timestamps!

See COS 418: hitp

Recall “eager replication”

On a write, immediately replicate elsewhere

Wait until write committed to sufficient # of
nodes before acknowledging

What does this mean?

Implementing strong

consistency

Two phase commit protocol

1. C = P: ‘request write X”
Client C %
l 2. P A, B: ‘prepare to write X”
3. A,B->P: ‘prepared’or “error’

Primary P \ﬂ
j : \/ 4. P> C: “result write X" or ‘failed”
5. P> A, B: “commit write X”
A B

28

https://www.cs.princeton.edu/courses/archive/fall17/cos418/docs/L4-time.pptx

State machine replication

+ Any server is essentially a stafe machine

— Operations transition between states

* Need an op to be executed on all replicas, or none at all
—i.e., we need distributed all-or-nothing atomicity

— If op is deterministic, replicas will end in same state

29

Two phase commit protocol

1. C > P: “request <op>"
Client C ‘
2. P~ A, B: ‘prepare <op>"
i 3. A,B->P: ‘prepared”or “error”’

Primary P
4. P -> C: ‘result exec<op>"or ‘failed”
5. P-> A, B: ‘commit <op>"
A B

What if primary fails?
Backup fails?

30

Backup

Two phase commit protocol

Two phase commit protocol

1. C = P: ‘“request <op>”
Client C ‘
ll 2. P> A, B: ‘prepare <op>”
3. A,B->P: ‘prepared”or “error’

5. P> A, B: “commit <op>”"

Primary P m
¢ x 4. P - C: ‘result exec<op>”"or ‘failed”
B

“Okay” (i.e., op is stable) if
written to > 2 backups

31

pErrry N _emmmes N

Client C PagPtiei SN e O

e ‘\\/’I’ s\\\
g

[/ Y N\
r s AN A Y
v 1 AR 1 \
i >%. (1) > I
& nodes \!!i nodes i
(Y \\{I' 7]
LY \ 7/

+ Commit sets always overlap
= 1 node

* Any >%: nodes guaranteed
to see committed op
32

Wednesday class

Papers: Strong consistency

Lecture: Consensus, view change protocols

