

Crowds

- Key idea
 - Users' traffic blends into a crowd of users
 - Eavesdroppers and end-hosts don't know which user originated what traffic
- High-level implementation
 - Every user runs a proxy on their system
 - When a message is received, select x [0, 1]
 - If $x > p_{f}$ forward the message to a random proxy
 - Else: deliver the message to the actual receiver

10

Summary of Crowds

- The good:
 - Crowds has excellent scalability
 - Each user helps forward messages and handle load
 - More users = better anonymity for everyone
 - Strong source anonymity guarantees
- The bad:
 - Very weak destination anonymity
 - Evil proxies can always see the destination
 - Weak unlinkability guarantees

Mix Networks

- A different approach to anonymity than Crowds
- Originally designed for anonymous email
 - David Chaum, 1981
 - Concept has since been generalized for TCP traffic
- · Hugely influential ideas
 - Onion routing
 - Traffic mixing
 - Dummy traffic (a.k.a. cover traffic)

18

Chain multiple MIXes for security

- Synchronously collects and shuffles messages (votes)
- Secure as long as at least 1 honest

