Anonymous Communication

COS 518: Advanced Computer Systems
Lecture 20
Michael Freedman

Slides based heavily on Christo Wilson’s CS4700/5700 at Northeastern

Definition

• Hiding identities of parties involved in communications from each other, or from third-parties
 – “Who you are” from the communicating party
 – “Who you are talking to” from everyone else

Quantifying Anonymity

• How can we calculate how anonymous we are?

 Suspects (Anonymity Set)

 Who sent this message?

• Larger anonymity set = stronger anonymity

FBI agents tracked Harvard bomb threats despite Tor

by Russell Brandon | @RussellBrandon | Dec 18, 2019, 12:56pm EST

WHAT IS MAN THAT THOU ART MINDFUL OF HIM
Anonymity Systems

Crypto (SSL)
- Content is unobservable
 - Due to encryption
- Source and destination are trivially linkable
 - No anonymity!

Anonymizing Proxies
- Source is known
- Destination anonymity
- HTTPS Proxy
 No anonymity!

Anonymizing VPNs
- Source is known
- Destination anonymity
- Destination known
 No anonymity!
Crowds

- Key idea
 - Users’ traffic blends into a crowd of users
 - Eavesdroppers and end-hosts don’t know which user originated what traffic

- High-level implementation
 - Every user runs a proxy on their system
 - When a message is received, select $x \in [0, 1]$
 - If $x > p$: forward the message to a random proxy
 - Else: deliver the message to the actual receiver

Crowds Example

- Links between users use public key crypto
- Users may appear on the path multiple times

Anonymity in Crowds

- No source anonymity
 - Target receives $m \geq 0$ msgs, sends $m+1$ msgs
 - Thus, target is sending something
- Destination anonymity is maintained
 - If the source isn’t sending directly to the receiver
Anonymity in Crowds

- Source and destination are anonymous
 - Source and destination are proxies
 - Destination is hidden by encryption

Anonymity in Crowds

- Destination known
 - Source is anonymous
 - $O(n)$ possible sources, where n is the number of proxies

Anonymity in Crowds

- Destination is known
 - Evil proxy able to decrypt the message
- Source is somewhat anonymous
 - Suppose f evil in system and if $p_r > 0.5$ and $n > 3(f + 1)$, source cannot be inferred with prob > 0.5

Summary of Crowds

- The good:
 - Crowds has excellent scalability
 - Each user helps forward messages and handle load
 - More users = better anonymity for everyone
 - Strong source anonymity guarantees

- The bad:
 - Very weak destination anonymity
 - Evil proxies can always see the destination
 - Weak unlinkability guarantees
Mixes

Mix Networks

• A different approach to anonymity than Crowds

• Originally designed for anonymous email
 – David Chaum, 1981
 – Concept has since been generalized for TCP traffic

• Hugely influential ideas
 – Onion routing
 – Traffic mixing
 – Dummy traffic (a.k.a. cover traffic)

Onion Routing

• Mixes form a cascade of anonymous proxies

• All traffic is protected with layers of encryption

Another View of Encrypted Paths

Encrypted Tunnels

Non-encrypted

\[E(K_P, E(K_P, E(K_P, M))) = C \]
Return Traffic

• In a mix network, how can the destination respond to the sender?

• During path establishment, the sender places keys at each mix along the path
 – Data is re-encrypted as it travels the reverse path

Traffic Mixing

• Hinders timing attacks
 – Messages may be artificially delayed
 – Temporal correlation is warped

• Problems:
 – Requires lots of traffic
 – Adds latency to network flows

Applied to cryptographic voting

• Server collects votes
• Computes random shuffle of votes
• Outputs votes in randomized order
• Includes “proof” that correctly shuffled

Chain multiple MIXes for security

• Synchronously collects and shuffles messages (votes)
• Secure as long as at least 1 honest
Dummy / Cover Traffic

- Simple idea:
 - Send useless traffic to help obfuscate real traffic

In practice
Hard to be anonymous
Information leaked at many layers

Using Content to Deanonymize

- Login to email account
- Information sent in cookies
- Accessing Facebook pages

No anonymity!

It’s Hard to be Anonymous!

- Network location (IP address) can be linked directly to you
 - ISPs store communications records (legally required for several years)
 - Law enforcement can subpoena these records

- Application is being tracked
 - Cookies, Flash cookies, E-Tags, HTML5 Storage, browser fingerprinting
 - Centralized services like Skype, Google voice

- Activities can be used to identify you
 - Unique websites and apps that you use, types of clicked links
 - Types of links that you click
You Have to Protect at All Layers!

Challenges:

- Maintain performance
- Provide functionality!