
1

Naming and weak consistency

COS 518: Advanced Computer Systems
Lecture 2

Mike Freedman

Naming and system components

• How to design interface between components?

• Many interactions involve naming things
– Naming objects that caller asks callee to manipulate
– Naming caller and callee together

Caller Callee

2

Potential Name Syntax
• Human readable?
– If users interact with the names

• Fixed length?
– If equipment processes at high speed

• Large name space?
– If many nodes need unique names

• Hierarchical names?
– If the system is very large and/or federated

• Self-certifying?
– If preventing “spoofing” is important

3

Properties of Naming
• Enabling sharing in applications

– Multiple components or users can name a shared object.
– Without names, client-server interface pass entire object by value

• Retrieval
– Accessing same object later on, just by remembering name

• Indirection mechanism
– Component A knows about name N
– Interposition: can change what N refers to without changing A

• Hiding
– Hides impl. details, don’t know where google.com located
– For security purposes, might only access resource if know name (e.g.,

dropbox or Google docs URL –> knowledge gives access) 4

2

High-level view of naming

• Set of possible names

• Set of possible values that names map to

• Lookup algorithm that translates name to value
– Global (context-free) or local names?

– Who supplies context?

5

• Host names: www.cs.princeton.edu
– Mnemonic, variable-length, appreciated by humans

– Hierarchical, based on organizations

– Domain: registrar for each top-level domain (eg, .edu)

– Host name: local administrator assigns to each host

Hierarchical Assignment Processes

6

• IP addresses: 128.112.7.156
– Numerical 32-bit address appreciated by routers

– Hierarchical, based on organizations and topology

– Prefixes: ICANN, regional Internet registries, and ISPs

– Hosts: static configuration, or dynamic using DHCP

Hierarchical Assignment Processes

7

• MAC addresses: 00-15-C5-49-04-A9
– Numerical 48-bit address appreciated by adapters

– Non-hierarchical, unrelated to network topology

– Blocks: assigned to vendors by the IEEE

– Adapters: assigned by the vendor from its block

Hierarchical Assignment Processes

8

3

Case Study:
Domain Name System (DNS)

Computer science concepts underlying DNS
• Indirection: names in place of addresses
• Hierarchy: in names, addresses, and servers
• Caching: of mappings from names to/from addresses

9

Strawman Solution #1: Local File

• Original name to address mapping
– Flat namespace
– /etc/hosts
– SRI kept main copy
– Downloaded regularly

• Count of hosts was increasing: moving from a machine
per domain to machine per user
– Many more downloads
– Many more updates

10

Strawman Solution #2: Central Server

• Central server
– One place where all mappings are stored
– All queries go to the central server

• Many practical problems
– Single point of failure
– High traffic volume
– Distant centralized database
– Single point of update
– Does not scale

Need a distributed, hierarchical collection of servers
11

Domain Name System (DNS)
• Properties of DNS
– Hierarchical name space divided into zones
– Distributed over a collection of DNS servers

• Hierarchy of DNS servers
– Root servers
– Top-level domain (TLD) servers
– Authoritative DNS servers

• Performing the translations
– Local DNS servers and client resolvers

12

4

Distributed Hierarchical Database

com edu org ac uk zw arpa

unnamed root

bar

west east

foo my

ac

cam

usr

in-
addr

12

34

56

generic domains country domains

my.east.bar.edu usr.cam.ac.uk

14

DNS Queries

requesting host
a.cs.princeton.edu

www.umass.edu

root DNS server for .

local DNS server
dns.princeton.edu

3

authoritative DNS server
for umass.edu

dns.umass.edu

TLD DNS server
for .edu

a.cs.princeton.edu
wants IP address for
www.umass.edu

Recursive vs. Iterative Queries

local DNS server
dns.cs.princeton.edu

1

2

4
5

6

7
8

9

10

15

DNS Queries

requesting host
a.cs.princeton.edu www.umass.edu

root DNS server for .

3

authoritative DNS server
for umass.edu

dns.umass.edu

TLD DNS server
for .edu• DNS query latency:

– e.g., 1 second

• Caching to reduce overhead
and delay
– Small # of top-level servers,

that change rarely
– Popular sites visited often

• Where to cache?
– Local DNS server
– Browser

1

2

4
5

6

7
8

9

10

Reliability
• DNS servers are replicated
– Name service available if at least one replica is up
– Queries can be load balanced between replicas

• UDP used for queries
– Need reliability: must implement this on top of UDP

• Try alternate servers on timeout
– Exponential backoff when retrying same server

• Same identifier for all queries
– Don’t care which server responds

16

5

DNS Cache Consistency
• Goal: Ensuring cached data is up to date

• DNS design considerations
– Cached data is “read only”
– Explicit invalidation would be expensive

• Server would need to keep track of all resolvers caching

• Avoiding stale information
– Responses include a “time to live” (TTL) field
– Delete the cached entry after TTL expires

• Perform negative caching (for dead links, misspellings)
– So failures quick and don’t overload gTLD servers

17

Intro to
fault tolerant + consistency

18

• Building reliable systems from unreliable components

• Three basic steps

1. Detecting errors: discovering presence of an error in a
data value or control signal

2. Containing errors: limiting how far errors propagate

3. Masking errors: designing mechanisms to ensure system
operates correctly despite error (+ possibly correct error)

19

What is fault tolerance?

• Say one bit in a DRAM fails…
• …it flips a bit in a memory address the

kernel is writing to...
• ...causes big memory error elsewhere,

or a kernel panic...
• ...program is running one of many

distributed file system storage servers...
• ...a client can’t read from FS, so it hangs

20

Why is fault tolerance hard?

Failures
Propagate

6

1. Do nothing: silently return the failure

2. Fail fast: detect the failure and report at interface
• Ethernet station jams medium on detecting collision

3. Fail safe: transform incorrect behavior or values into
acceptable ones
• Failed traffic light controller switches to blinking-red

4. Mask the failure: operate despite failure
• Retry op for transient errors, use error-correcting code for

bit flips, replicate data in multiple places

21

So what to do?

• We mask failures on one server via
– Atomic operations
– Logging and recovery

• In a distributed system with multiple servers, we
might replicate some or all servers

• But if you give a mouse some replicated servers
– She’s going to need to figure out how to keep the state of

the servers consistent (immediately? eventually?)

22

Masking failures

Safety and liveness

23

• This is hard!
– How do we design fault-tolerant systems?
– How do we know if we’re successful?

• Often use “properties” that hold true for every
possible execution

• We focus on safety and liveness properties

24

Reasoning about fault tolerance

7

• “Bad things” don’t happen
– No stopped or deadlocked states
– No error states

• E.g., mutual exclusion:
– Two processes can’t be in critical section at same time

25

Safety

• “Good things” happen
– …eventually

• Examples
– Starvation freedom: process 1 can eventually enter a

critical section as long as process 2 terminates
– Eventual consistency: if a value in an application doesn’t

change, two servers will eventually agree on its value

26

Liveness

• “Good” and “bad” are application-specific

• Safety is very important in banking transactions

• Liveness is very important in social networking sites

27

Often a tradeoff

Eventual Consistency

28

8

• Def’n: If no new updates to the object, eventually all
accesses will return the last updated value

• Common: git, iPhone sync, Dropbox, Amazon Dynamo

• Why do people like eventual consistency?
– Fast read/write of local copy (no primary, no Paxos)
– Disconnected operation

• Challenges
– How do you discover other writes?
– How do you resolve conflicting writes?

29

Eventual consistency Two prevailing styles of discovery
• Gossip pull (“anti-entropy”)

– A asks B for something it is trying to “find”
– Commonly used for management replicated data

• Resolve differences between DBs by comparing digests

• Gossip push (“rumor mongering”):
– A tells B something B doesn’t know
– Gossip for multicasting

• Keep sending for bounded period of time: O (log n)
– Also used to compute aggregates

• Max, min, avg easy. Sum and count more difficult.

• Push-pull gossip
– Combines both : O(n log log n) msgs to spread in O(log n) time

Monday’s readings

• Everybody:
• E2E Arguments in System Design

• Signup:
• Amazon’s Dynamo
• Yahoo!’s PNUTS

31

