
1

Content Distribution Networks
+ P2P File Sharing

COS 518: Advanced Computer Systems
Lecture 16

Mike Freedman

Single Server, Poor Performance

• Single server
–Single point of failure
–Easily overloaded
–Far from most clients

• Popular content
–Popular site
– “Flash crowd”
–Denial of Service attack

2

Skewed Popularity of Web Traffic

“Zipf” or “power-law”
distribution

3

Characteristics of WWW Client-based Traces
Carlos R. Cunha, Azer Bestavros, Mark E. Crovella, BU-CS-95-01

Web Caching

4

2

Proxy Caches

client

Proxy
server

client

HTTP request

HTTP request

HTTP response

HTTP response

HTTP request

HTTP response

origin
server

5

5

Forward Proxy

• Cache “close” to the client
– Under administrative control

of client-side AS

• Explicit proxy
– Requires configuring browser

• Implicit proxy
– Service provider deploys an “on path” proxy
– … that intercepts and handles Web requests

6

Proxy
server

HTTP request

HTTP request

HTTP response

HTTP response

client

client

Reverse Proxy

• Cache “close” to server
– Either by proxy run by server or

in third-party CDNs

• Directing clients to the proxy
– Map the site name to the

IP address of the proxy

7

Proxy
server

HTTP request

HTTP response

origin
server

origin
server

HTTP requestHTTP response

Router Router

Data Centers

. . .
Servers Servers

Client

Reverse
Proxy

Reverse
Proxy

Requests

Client Client

Private
Backbone

Internet

Google Design

8

3

Proxy Caches
(A) Forward (B) Reverse (C) Both (D) Neither

• Reactively replicates popular content
• Reduces origin server costs
• Reduces client ISP costs
• Intelligent load balancing between origin servers
• Offload form submissions (POSTs) and user auth
• Content reassembly or transcoding on behalf of origin
• Smaller round-trip times to clients
• Maintain persistent connections to avoid TCP setup

delay (handshake, slow start)
9

Limitations of Web Caching
• Much content is not cacheable
–Dynamic data: stock prices, scores, web cams
–CGI scripts: results depend on parameters
–Cookies: results may depend on passed data
–SSL: encrypted data is not cacheable
–Analytics: owner wants to measure hits

• Stale data
–Or, overhead of refreshing the cached data

11

Modern HTTP Video-on-Demand
• Download “content manifest” from origin server
• List of video segments belonging to video
– Each segment 1-2 seconds in length
– Client can know time offset associated with each
– Standard naming for different video resolutions and formats:

e.g., 320dpi, 720dpi, 1040dpi, …

• Client downloads video segment (at certain resolution)
using standard HTTP request.
– HTTP request can be satisfied by cache: it’s a static object

• Client observes download time vs. segment duration,
increases/decreases resolution if appropriate 12

What about large files?

13

4

Peer-to-Peer Networks: BitTorrent
• BitTorrent history
– 2002: B. Cohen debuted BitTorrent

• Emphasis on efficient fetching, not searching
– Distribute same file to many peers
– Single publisher, many downloaders

• Preventing free-loading
– Incentives for peers to contribute

14

BitTorrent: Simultaneous Downloads
• Divide file into many chunks (e.g., 256 KB)
– Replicate different chunks on different peers
– Peers can trade chunks with other peers
– Peer can (hopefully) assemble the entire file

• Allows simultaneous downloading
– Retrieving different chunks from different peers
– And uploading chunks to peers
– Important for very large files

15

BitTorrent: Tracker
• Infrastructure node
– Keeps track of peers participating in the torrent
– Peers registers with the tracker when it arrives

• Tracker selects peers for downloading
– Returns a random set of peer IP addresses
– So the new peer knows who to contact for data

• Can have “trackerless” system
– Using distributed hash tables (DHTs)

16 17

BitTorrent: Overall Architecture

Web page
with link
to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

TrackerWeb Server

.to
rre

nt

5

18

BitTorrent: Overall Architecture

Web page
with link
to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Get-announce

Web Server

19

BitTorrent: Overall Architecture

Web page
with link
to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Response-peer lis
t

Web Server

20

BitTorrent: Overall Architecture

Web page
with link
to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Shake-hand

Web Server

Shake-hand

21

BitTorrent: Overall Architecture

Web page
with link
to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces

pieces

Web Server

6

22

BitTorrent: Overall Architecture

Web page
with link
to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces
pieces

pieces

Web Server

23

BitTorrent: Overall Architecture

Web page
with link
to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Get-announce

Response-peer lis
t

pieces
pieces

pieces

Web Server

24

BitTorrent: Chunk Request Order
• Which chunks to request?
– Could download in order
– Like an HTTP client does

• Problem: many peers have the early chunks
– Peers have little to share with each other
– Limiting the scalability of the system

• Problem: eventually nobody has rare chunks
– E.g., the chunks need the end of the file
– Limiting the ability to complete a download

• Solutions: random selection and rarest first
25

BitTorrent: Rarest Chunk First
• Which chunks to request first?
– Chunk with fewest available copies (i.e., rarest chunk)

• Benefits to the peer
– Avoid starvation when some peers depart

• Benefits to the system
– Avoid starvation across all peers wanting a file
– Balance load by equalizing # of copies of chunks

7

Free-Riding in P2P Networks
• Vast majority of users are free-riders
– Most share no files and answer no queries
– Others limit # of connections or upload speed

• A few “peers” essentially act as servers
– A few individuals contributing to the public good
– Making them hubs that basically act as a server

• BitTorrent prevent free riding
– Allow the fastest peers to download from you
– Occasionally let some free loaders download

26 27

Bit-Torrent: Preventing Free-Riding
• Peer has limited upload bandwidth
– And must share it among multiple peers
– Tit-for-tat: favor neighbors uploading at highest rate

• Rewarding the top four neighbors
– Measure download bit rates from each neighbor
– Reciprocate by sending to the top four peers

• Optimistic unchoking
– Randomly try a new neighbor every 30 seconds
– So new neighbor has a chance to be a better partner

Conclusion
• Content distribution is hard
– Many, diverse, changing objects
– Clients distributed all over the world
– Reducing latency is king

• Contribution distribution solutions
– Reactive caching, proactive CDNs

• BitTorrent
– Distributed download of large files
– Anti-free-riding techniques

• Great example of how change can happen
quickly in application-level protocols 28

