Peer-to-Peer Systems and
Distributed Hash Tables

Today

COS 518: Advanced Computer Systems
Lecture 15

Michael Freedman

1. Peer-to-Peer Systems
— Napster, Gnutella, BitTorrent, challenges

2. Distributed Hash Tables
3. The Chord Lookup Service

4. Concluding thoughts on DHTs, P2P

What is a Peer-to-Peer (P2P) system?

% Node
Node\ / Node

Internet
82— A
Node Node
* Adistributed system architecture:
— No centralized control
— Nodes are roughly symmetric in function

« Large number of unreliable nodes

Why might P2P be a win?

» High capacity for services through parallelism:
— Many disks
— Many network connections
— Many CPUs

+ Absence of a centralized server may mean:
— Less chance of service overload as load increases
— Easier deployment
— Asingle failure won’t wreck the whole system
— System as a whole is harder to attack

P2P adoption

Successful adoption in some niche areas
1. Client-to-client (legal, illegal) file sharing
2. Digital currency: no natural single owner (Bitcoin)

3. Voicelvideo telephony: user to user anyway
— Issues: Privacy and control

Example: Classic BitTorrent

1. User clicks on download link
— Gets torrent file with content hash, IP addr of tracker

2. User’s BitTorrent (BT) client talks to tracker
— Tracker tells it list of peers who have file

3. User’s BT client downloads file from peers

4. User’s BT client tells tracker it has a copy now, too

5. User’s BT client serves the file to others for a while

Provides huge download bandwidth,
without expensive server or network links

\, -

(
1
1
1
1
1

~—————

The lookup problem

.E. d get (“Pacific Rim.mp4”) I

g 4 " A&

N, Client

7€

Internet
Publisher (N,)

put (“Pacific Rim.mp4”~, N5
[content])

Centralized lookup (Napster)

4 g
g ~ "+ A

N, Cl‘ient

IP address of N,;)

SetLoc (“Pacific Rim.mp4",] DB é Lool::lp(P:c.;.flc]
im.mp4”

Publisher (N,)| Simple, but O(V) state and a

key=“Pacific Rim. mp4{., _______________________________
value=[content]

Flooded queries (original Gnutella)

Routed DHT queries (Chord)

3
(1]
(7]
(7
<\
«Q
[1]
(7]
T
(1)
=
o
o
>
c
T

Publié%r (Na) E./_‘ﬁ;

key=“Star Wars.mov”, N5
value=[content]

E_ E Lookup (H(data))
g = Mbe<m
N Client
1
Be—/
___F:ePLi_s_ner_st':z___E______i _____________

Can we make it robust, reasonable i
state, reasonable number of hops? |

Today

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service

4. Concluding thoughts on DHTs, P2P

1"

What is a DHT (and why)?

* Local hash table:
key = Hash(name)
put (key, value)
get(key) 2> value

+ Service: Constant-time insertion and lookup

millions of hosts on the Internet?

How can I do (roughly) this across
Distributed Hash Table (DHT)

What is a DHT (and why)?

+ Distributed Hash Table:
key = hash(data)
lookup(key) > IP addr (Chord lookup service)
send-RPC(IP address, put, key, data)
send-RPC(IP address, get, key) > data

* Partitioning data in large-scale distributed systems
— Tuples in a global database engine
— Data blocks in a global file system
— Files in a P2P file-sharing system

Cooperative storage with a DHT

| Distributed application |

put(key, data) { get (key) { f data
Distributed hash table | (DHash)

lookup(key) node IP address
(Chord)

[rote] [mose] -

» App may be distributed over many nodes
» DHT distributes data storage over many nodes

BitTorrent over DHT

* BitTorrent can use DHT instead of (or with) a tracker

+ BT clients use DHT:
— Key = file content hash (“infohash”)
— Value = IP address of peer willing to serve file
+ Can store multiple values (i.e. IP addresses) for a key

» Client does:
— get (infohash) to find other clients willing to serve
— put(infohash, my-ipaddr)to identify itself as willing

Why the put/get DHT interface?

* API supports a wide range of applications
— DHT imposes no structure/meaning on keys

» Keyl/value pairs are persistent and global
— Can store keys in other DHT values
— And thus build complex data structures

Why might DHT design be hard?

Decentralized: no central authority

Scalable: low network traffic overhead

Efficient: find items quickly (latency)

Dynamic: nodes fail, new nodes join

Today

1. Peer-to-Peer Systems
2. Distributed Hash Tables

3. The Chord Lookup Service
— Basic design
— Integration with DHash DHT, performance

Chord lookup algorithm properties

* Interface: lookup(key) — IP address

Efficient: O(log N) messages per lookup
— N is the total number of servers

Scalable: O(log N) state per node
* Robust: survives massive failures

» Simple to analyze

20

Chord identifiers

* Key identifier = SHA-1(key)

* Node identifier = SHA-1(IP address)

+ SHA-1 distributes both uniformly

* How does Chord partition data?
— i.e., map key IDs to node IDs

21

Consistent hashing [Karger ‘97]

Circular 7-bit
ID space

Chord: Successor pointers

Pl g

[\
(=
k8o [N9o] /
N

23

24

Simple lookup algorithm

Lookup (key-id)
succ € my successor
if my-id < succ < key-id /nexthop
call Lookup(key-id) on succ
else /done

return succ

Correctness depends only on successors

25

Improving performance

* Problem: Forwarding through successor is slow
+ Data structure is a linked list: O(n)

* Idea: Can we make it more like a binary search?
—Need to be able to halve distance at each step

26

“Finger table” allows log N-time lookups

27

Finger i Points to Successor of n+2

28

Implication of finger tables

+ Abinary lookup tree rooted at every node
— Threaded through other nodes' finger tables

* Better than arranging nodes in a single tree
— Every node acts as a root
*» So there's no root hotspot

* No single point of failure
* But a lot more state in total

29

Lookup with finger table

Lookup (key-id)
look in local finger table for
highest n: my-id < n < key-id
if n exists
call ILookup(key-id) on node n /nexthop
else
return my successor /done

30

Lookups Take O(log N) Hops

[5]
N10] oo
Lookup(K19)

3

An aside: Is log(n) fast or slow?

» For a million nodes, it's 20 hops
+ If each hop takes 50ms, lookups take a second

* If each hop has 10% chance of failure, it's a couple
of timeouts

» So in practice log(n) is better than O(n) but not great

32

Joining: Linked list insert

1. Lookup(36)

33

Join (2) Join (3)

2. N36 sets its own 3. Copy keys 26..36 K30
successor pointer l K from N40 to N36 K
N0 &gg N40 &gg
34 35
Notify maintains predecessors Stabilize message fixes successor

notify N25

“My predecessor
is N36.”

36 37

Joining: Summary

N\
K30

K30
N40 K38

» Predecessor pointer allows link to new node
» Update finger pointers in the background

» Correct successors produce correct lookups
38

Failures may cause incorrect lookup

N120

N80 does not know correct |
successor, so incorrect lookup |

.

39

Successor lists

 Each node stores a list of its r immediate successors
— After failure, will know first live successor
— Correct successors guarantee correct lookups
* Guarantee is with some probability

40

Today

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service
— Basic design
— Integration with DHash DHT, performance

43

10

The DHash DHT

+ Builds key/value storage on Chord

* Replicates blocks for availability

— Stores K replicas at the Kk successors after the block
on the Chord ring

» Caches blocks for load balancing

— Client sends copy of block to each of the servers it
contacted along the lookup path

» Authenticates block contents

a4

DHash data authentication

* Two types of DHash blocks:

— Content-hash: key = SHA-1(data)

— Public-key: Data signed by corresponding private key

» Chord File System example:

DHash replicates blocks at r successors

N
s
EK Block 17
‘/

* Replicas are easy to find if successor fails

» Hashed node IDs ensure independent failure
46

directory inode data block
H(D) bl?Ck - H(F) bl?Ckf H(Bl! Bl
public key root—block / D - Fi
. . H(B2 data block
signature B 2
45
Today

1. Peer-to-Peer Systems

2. Distributed Hash Tables

3. The Chord Lookup Service

— Basic design
— Integration with DHash DHT, performance

4. Concluding thoughts on DHT, P2P

51

1

DHTs: Impact

» Original DHTs (CAN, Chord, Kademlia, Pastry,
Tapestry) proposed in 2001-02

* Next 5-6 years saw proliferation of DHT-based apps:
— Filesystems (e.g., CFS, lvy, OceanStore, Pond, PAST)
— Naming systems (e.g., SFR, Beehive)
— DB query processing [PIER, Wisc]
— Content distribution systems (e.g., CoralCDN)
— distributed databases (e.g., PIER)

52

Why don’t all services use P2P?

1. High latency and limited bandwidth
between peers (vs. intra/inter-datacenter)

2. User computers are less reliable than
managed servers

3. Lack of trust in peers’ correct behavior
— Securing DHT routing hard, unsolved in practice

53

DHTs in retrospective

» Seem promising for finding data in large P2P systems
» Decentralization seems good for load, fault tolerance

» But: the security problems are difficult
* But: churn is a problem, particularly if log(n) is big

* And: cloud computing solved many economics
reasons, as did rise of ad-based business models

* DHTs have not had the hoped-for impact

54

What DHTs got right

» Consistent hashing
— Elegant way to divide a workload across machines

— Very useful in clusters: actively used today in Amazon
Dynamo and other systems

Replication for high availability, efficient recovery

* Incremental scalability

+ Self-management: minimal configuration

* Unique trait: no single server to shut down/monitor

55

12

