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What is streaming?
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• Fast data!
• Fast processing!
• Lots of data!

• Single node
– Read data from socket
– Process
– Write output
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Simple stream processing

• Convert Celsius temperature to Fahrenheit
– Stateless operation:   emit (input * 9 / 5) + 32
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Examples:  Stateless conversion

CtoF
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• Function can filter inputs
– if (input > threshold)  {  emit input }
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Examples:  Stateless filtering

Filter

• Compute EWMA of Fahrenheit temperature
– new_temp = ⍺ * ( CtoF(input) ) + (1- ⍺) * last_temp
– last_temp = new_temp
– emit new_temp
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Examples:  Stateful conversion

EWMA

• E.g., Average value per window 
– Window can be # elements (10) or time (1s)
– Windows can be disjoint (every 5s)
– Windows can be “tumbling” (5s window every 1s)
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Examples:  Aggregation (stateful)

Avg

Enter “BIG DATA”
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• Large amounts of data to process in real time

• Examples
– Social network trends (#trending)
– Intrusion detection systems (networks, datacenters)
– Sensors:  Detect earthquakes by correlating 

vibrations of millions of smartphones
– Fraud detection 

• Visa:  2000 txn / sec on average, peak ~47,000 / sec
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The challenge of stream processing

Tuple-by-Tuple
input ← read
if (input > threshold)  {  

emit input 
}

Micro-batch
inputs ← read
out = []
for input in inputs {

if (input > threshold) {
out.append(input)

}
}
emit out
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Scale “up”

Tuple-by-Tuple
Lower Latency

Lower Throughput

Micro-batch
Higher Latency

Higher Throughput

11

Scale “up”

Why?  Each read/write is an system call into kernel.  
More cycles performing kernel/application transitions 

(context switches), less actually spent processing data.
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Scale “out”
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Stateless operations: trivially parallelized

C F

C F

C F

• Aggregations:
– Need to join results across parallel computations
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State complicates parallelization

AvgCtoF Filter

• Aggregations:
– Need to join results across parallel computations
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State complicates parallelization
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• Aggregations:
– Need to join results across parallel computations
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Parallelization complicates fault-tolerance
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• Compute trending keywords
– E.g., 
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Can parallelize joins
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Can parallelize joins
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Parallelization complicates fault-tolerance
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tweets A Tale of Four Frameworks

1. Record acknowledgement (Storm)

2. Micro-batches (Spark Streaming, Storm Trident)

3. Transactional updates (Google Cloud dataflow)

4. Distributed snapshots (Flink)
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• Goal: Ensure each input ”fully processed”
• Approach:  DAG / tree edge tracking

– Record edges created as tuple processed

– Wait for all edges to be marked done

– Inform source of data when complete;  
otherwise, they resend tuple.

• Challenge:  “at least once” means:
– Operators can receive tuple > once

– Replay can be out-of-order

– ... application needs to handle.
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Fault tolerance via record acknowledgement
(Apache Storm -- at least once semantics)

• Rather than log each record for each operator,                          
take system-wide snapshots

• Snapshotting:
– Determine consistent snapshot of system-wide state              

(includes in-flight records and operator state)
– Store state in durable storage

• Recover:
– Restoring latest snapshot from durable storage
– Rewinding the stream source to snapshot point, and replay inputs

• Algorithm is based on Chandy-Lamport distributed snapshots, 
but also captures stream topology
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Fault Tolerance via distributed snapshots
(Apache Flink)

• Use markers (barriers) in the input data stream to tell 
downstream operators when to consistently snapshot

Fault Tolerance via distributed snapshots
(Apache Flink)
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But another big issue:

Streaming = unbounded data

(Batch = bounded data)
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Three major challenges

• Consistency: historically, streaming systems 
were created to decrease latency and made 
many sacrifices (e.g., at-most-once processing)

• Throughput vs. latency: typically a trade-off
• Time: new challenge

We’ve covered consistency in a lot of detail, 
let’s investigate time
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Our lives used to be easy…
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New Concerns

• Once data is unbounded, new concerns:
– Sufficient capacity so processing speed                       

>= arrival velocity (on average)
– Support for handling out-of-order data

• Easiest thing to do:
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Windowing by processing time is great

• Easy to implement and verify correctness
• Great for applications like filtering or monitoring
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What if care about when events happen?

• If we associate event times, then items could now 
come out-of-order! (why?)

30

Time creates new wounds
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This would be nice
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But not the case, so we need tools

• Windows: how should we group together data?
• Watermarks: how can we mark when the last 

piece of data in some window has arrived?

• Triggers: how can we initiate an early result?
• Accumulators: what do we do with the results 

(correct, modified, or retracted)?

All topics covered in next week’s readings!


