
1

Streaming

COS 518: Advanced Computer Systems
Lecture 12

Michael Freedman

What is streaming?

2

• Fast data!
• Fast processing!
• Lots of data!

• Single node
– Read data from socket
– Process
– Write output

3

Simple stream processing

• Convert Celsius temperature to Fahrenheit
– Stateless operation: emit (input * 9 / 5) + 32

4

Examples: Stateless conversion

CtoF

2

• Function can filter inputs
– if (input > threshold) { emit input }

5

Examples: Stateless filtering

Filter

• Compute EWMA of Fahrenheit temperature
– new_temp = ⍺ * (CtoF(input)) + (1- ⍺) * last_temp
– last_temp = new_temp
– emit new_temp

6

Examples: Stateful conversion

EWMA

• E.g., Average value per window
– Window can be # elements (10) or time (1s)
– Windows can be disjoint (every 5s)
– Windows can be “tumbling” (5s window every 1s)

7

Examples: Aggregation (stateful)

Avg

Enter “BIG DATA”

8

3

• Large amounts of data to process in real time

• Examples
– Social network trends (#trending)
– Intrusion detection systems (networks, datacenters)
– Sensors: Detect earthquakes by correlating

vibrations of millions of smartphones
– Fraud detection

• Visa: 2000 txn / sec on average, peak ~47,000 / sec

9

The challenge of stream processing

Tuple-by-Tuple
input ← read
if (input > threshold) {

emit input
}

Micro-batch
inputs ← read
out = []
for input in inputs {

if (input > threshold) {
out.append(input)

}
}
emit out

10

Scale “up”

Tuple-by-Tuple
Lower Latency

Lower Throughput

Micro-batch
Higher Latency

Higher Throughput

11

Scale “up”

Why? Each read/write is an system call into kernel.
More cycles performing kernel/application transitions

(context switches), less actually spent processing data.

12

Scale “out”

4

13

Stateless operations: trivially parallelized

C F

C F

C F

• Aggregations:
– Need to join results across parallel computations

14

State complicates parallelization

AvgCtoF Filter

• Aggregations:
– Need to join results across parallel computations

15

State complicates parallelization

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter

• Aggregations:
– Need to join results across parallel computations

16

Parallelization complicates fault-tolerance

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter

- blocks -

5

• Compute trending keywords
– E.g.,

17

Can parallelize joins

Sum
/ key

Sum
/ key

Sum
/ key

Sum
/ key

Sort top-k

- blocks -

portion tweets

portion tweets

portion tweets

18

Can parallelize joins

Sum
/ key

Sum
/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets

19

Parallelization complicates fault-tolerance

Sum
/ key

Sum
/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets A Tale of Four Frameworks

1. Record acknowledgement (Storm)

2. Micro-batches (Spark Streaming, Storm Trident)

3. Transactional updates (Google Cloud dataflow)

4. Distributed snapshots (Flink)

20

6

• Goal: Ensure each input ”fully processed”
• Approach: DAG / tree edge tracking

– Record edges created as tuple processed

– Wait for all edges to be marked done

– Inform source of data when complete;
otherwise, they resend tuple.

• Challenge: “at least once” means:
– Operators can receive tuple > once

– Replay can be out-of-order

– ... application needs to handle.

21

Fault tolerance via record acknowledgement
(Apache Storm -- at least once semantics)

• Rather than log each record for each operator,
take system-wide snapshots

• Snapshotting:
– Determine consistent snapshot of system-wide state

(includes in-flight records and operator state)
– Store state in durable storage

• Recover:
– Restoring latest snapshot from durable storage
– Rewinding the stream source to snapshot point, and replay inputs

• Algorithm is based on Chandy-Lamport distributed snapshots,
but also captures stream topology

22

Fault Tolerance via distributed snapshots
(Apache Flink)

• Use markers (barriers) in the input data stream to tell
downstream operators when to consistently snapshot

Fault Tolerance via distributed snapshots
(Apache Flink)

23

But another big issue:

Streaming = unbounded data

(Batch = bounded data)

24

7

25

Three major challenges

• Consistency: historically, streaming systems
were created to decrease latency and made
many sacrifices (e.g., at-most-once processing)

• Throughput vs. latency: typically a trade-off
• Time: new challenge

We’ve covered consistency in a lot of detail,
let’s investigate time

26

Our lives used to be easy…

27

New Concerns

• Once data is unbounded, new concerns:
– Sufficient capacity so processing speed

>= arrival velocity (on average)
– Support for handling out-of-order data

• Easiest thing to do:

28

Windowing by processing time is great

• Easy to implement and verify correctness
• Great for applications like filtering or monitoring

8

29

What if care about when events happen?

• If we associate event times, then items could now
come out-of-order! (why?)

30

Time creates new wounds

31

This would be nice

32

But not the case, so we need tools

• Windows: how should we group together data?
• Watermarks: how can we mark when the last

piece of data in some window has arrived?

• Triggers: how can we initiate an early result?
• Accumulators: what do we do with the results

(correct, modified, or retracted)?

All topics covered in next week’s readings!

