
3/13/19

1

Batch Processing

COS 518: Distributed Systems
Lecture 11

Mike Freedman

Basic architecture
in “big data” systems

2

Cluster
Manager

Worker

Cluster

Worker

Worker

Cluster
Manager

Worker

Cluster

Worker

Worker

64GB RAM
32 cores

64GB RAM
32 cores

64GB RAM
32 cores

64GB RAM
32 cores

3/13/19

2

Cluster
Manager

Worker

Cluster

Worker

Worker

Client
Submit WordCount.java Cluster

Manager

Worker

Cluster

Worker

Worker

Client
Launch
executor

Launch
driver

Launch
executor

Cluster
Manager

Worker

Cluster

Worker

Worker

Client

Word Count
driver

Word Count
executor

Word Count
executor

Cluster
Manager

Worker

Cluster

Worker

Worker

Client

Word Count
executor

Word Count
executor

Client
Submit FindTopTweets.java

Word Count
driver

3/13/19

3

Cluster
Manager

Worker

Cluster

Worker

Worker

Client

Word Count
executor

Word Count
executor

Client

Launch
executor

Launch
driver

Word Count
driver

Cluster
Manager

Worker

Cluster

Worker

Worker

Client

Word Count
executor

Word Count
executor

Client

Tweets
driver

Word Count
driverTweets

executor

Cluster
Manager

Worker

Cluster

Worker

Worker

Client

Word Count
executor

Word Count
executor

Client

Client

Word Count
driverTweets

executor

Tweets
driver

App3
driver

App3
executor

App3
executor

Clients submit applications to the cluster manager

Cluster manager assigns cluster resources to applications

Each Worker launches containers for each application

Driver containers run main method of user program

Executor containers run actual computation

Examples of cluster manager: YARN, Mesos

Examples of computing frameworks: Hadoop MapReduce, Spark

12

Basic architecture

3/13/19

4

Cluster-level: Cluster manager assigns resources to applications

Application-level: Driver assigns tasks to run on executors

A task is a unit of execution that operates on one partition

Some advantages:

Applications need not be concerned with resource fairness

Cluster manager need not be concerned with individual tasks

Easy to implement priorities and preemption

13

Two levels of scheduling

Case Study: MapReduce

(Data-parallel programming at scale)

14

15

Application: Word count

Hello my love. I love you, my dear. Goodbye.

hello: 1, my: 2, love: 2, i: 1, dear: 1, goodbye: 1

16

Application: Word count

Locally: tokenize and put words in a hash map

How do you parallelize this?

Split document by half

Build two hash maps, one for each half

Merge the two hash maps (by key)

3/13/19

5

How do you do this in a distributed environment?

When in the Course of human events, it

becomes necessary for one people to dissolve
the political bands which have connected

them with another, and to assume, among the

Powers of the earth, the separate and equal

station to which the Laws of Nature and of
Nature's God entitle them, a decent respect

to the opinions of mankind requires that

they should declare the causes which impel

them to the separation.

Input document

When in the Course of human events, it
becomes necessary for one people to

dissolve the political bands which have

connected them with another, and to assume,

among the Powers of the earth, the separate
and equal station to which the Laws of

Nature and of Nature's God entitle them, a
decent respect to the opinions of mankind

requires that they should declare the
causes which impel them to the separation.

Partition

When in the Course
of human events, it

becomes necessary for
one people to

dissolve the political
bands which have

connected them with
another, and to assume,

among the Powers
of the earth, the
separate and equal
station to which
the Laws of

Nature and of Nature's
God entitle them, a
decent respect to the
opinions of mankind

requires that they
should declare the
causes which impel them
to the separation.

3/13/19

6

when: 1, in: 1,

the: 1, course: 1,

of: 1, human: 1,

events: 1, it: 1

dissolve: 1, the: 2,

political: 1, bands:

1, which: 1, have: 1,

connected: 1, them: 1

...

among: 1, the: 2,

powers: 1, of: 2, earth:

1, separate: 1, equal:

1, and: 1 ...

nature: 2, and: 1, of:

2, god: 1, entitle: 1,

them: 1, decent: 1,

respect: 1, mankind: 1,

opinion: 1 ...

requires: 1, that: 1,

they: 1, should: 1,

declare: 1, the: 1,

causes: 1, which: 1 ...

Compute word counts locally

when: 1, in: 1,

the: 1, course: 1,

of: 1, human: 1,

events: 1, it: 1

dissolve: 1, the: 2,

political: 1, bands:

1, which: 1, have: 1,

connected: 1, them: 1

...

among: 1, the: 2,

powers: 1, of: 2, earth:

1, separate: 1, equal:

1, and: 1 ...

nature: 2, and: 1, of:

2, god: 1, entitle: 1,

them: 1, decent: 1,

respect: 1, mankind: 1,

opinion: 1 ...

requires: 1, that: 1,

they: 1, should: 1,

declare: 1, the: 1,

causes: 1, which: 1 ...

Compute word counts locally

Now what…
How to merge results?

23

Merging results computed locally

Don’t merge — requires additional computation for correct results

— what if data is too big? Too slow…

Partition key space among nodes in cluster (e.g. [a-e], [f-j], [k-p] ...)

1. Assign a key space to each node
2. Partition local results by the key spaces
3. Fetch and merge results that correspond to the node’s key space

Send everything to one node

Several options
when: 1, in: 1,

the: 1, course: 1,

of: 1, human: 1,

events: 1, it: 1

dissolve: 1, the: 2,

political: 1, bands:

1, which: 1, have: 1,

connected: 1, them: 1

...

among: 1, the: 2,

powers: 1, of: 2, earth:

1, separate: 1, equal:

1, and: 1 ...

nature: 2, and: 1, of:

2, god: 1, entitle: 1,

them: 1, decent: 1,

respect: 1, mankind: 1,

opinion: 1 ...

requires: 1, that: 1,

they: 1, should: 1,

declare: 1, the: 1,

causes: 1, which: 1 ...

3/13/19

7

when: 1, the: 1,

in: 1, it: 1, human: 1,

course: 1, events: 1,

of: 1

bands: 1, dissolve: 1,

connected: 1, have: 1,

political: 1, the: 1,

them: 1, which: 1

among: 1, and: 1,

equal: 1, earth: 1,

separate: 1, the: 2,

powers: 1, of: 2

nature: 2, of: 2,

mankind: 1, opinion: 1,

entitle: 1, and: 1,

decent: 1, god: 1,

them: 1, respect: 1,

causes: 1, declare: 1,

requires: 1, should: 1,

that: 1, they: 1, the:

1,

which: 1

Split local results by key space

[a-e]

[f-j]

[k-p]

[q-s]

[t-z]

All-to-all shuffle

[a-e]

[f-j]

[k-p]

[q-s]

[t-z]

when: 1, the: 1,

that: 1, they: 1,

the: 1, which: 1,

them: 1, the: 2,

the: 1, them: 1,

which: 1

bands: 1, dissolve: 1,

connected: 1, course: 1,

events: 1, among: 1, and: 1,

equal: 1, earth: 1, entitle: 1,

and: 1, decent: 1, causes: 1,

declare: 1

powers: 1, of: 2,

nature: 2, of: 2,

mankind: 1, of: 1,

opinion: 1,

political: 1

god: 1, have: 1,

in: 1, it: 1,

human: 1,

requires: 1, should:

1, respect: 1,

separate: 1

Note the duplicates...

[a-e]

[f-j]

[k-p]

[q-s]

[t-z]
god: 1, have: 1,

in: 1, it: 1,

human: 1,

requires: 1, should:

1, respect: 1,

separate: 1

[a-e]

[f-j]

[k-p]

[q-s]

[t-z]

Merge results received from other nodes

when: 1, the: 4,

that: 1, they: 1,

which: 2, them: 2

bands: 1, dissolve: 1,

connected: 1, course: 1,

events: 1, among: 1, and: 2,

equal: 1, earth: 1,

entitle: 1, decent: 1,

causes: 1, declare: 1

powers: 1, of: 5,

nature: 2, mankind: 1,

opinion: 1, political: 1

3/13/19

8

Partition dataset into many chunks

Map stage: Each node processes one or more chunks locally

Reduce stage: Each node fetches and merges partial results
from all other nodes

29

MapReduce

map(key, value) -> list(<k’, v’>)
Apply function to (key, value) pair

Outputs set of intermediate pairs

reduce(key, list<value>) -> <k’, v’>
Applies aggregation function to values

Outputs result

30

MapReduce Interface

map(key, value):
// key = document name
// value = document contents
for each word w in value:
emit (w, 1)

reduce(key, values):
// key = the word
// values = number of occurrences of that word
count = sum(values)
emit (key, count)

31

MapReduce: Word count

32

map combine partition reduce

MapReduce: Word count

3/13/19

9

33

Synchronization Barrier

2004

MapReduce

2007 2011 2012 2015

Dryad

35

Brainstorm: Top K
Find the largest K values from a set of numbers

How would you express this as a distributed application?

In particular, what would map and reduce phases look like?

Hint: use a heap…

36

Brainstorm: Top K
Assuming that a set of K integers fit in memory…

Key idea...

Map phase: everyone maintains a heap of K elements

Reduce phase: merge the heaps until you’re left with one

3/13/19

10

37

Brainstorm: Top K
Problem: What are the keys and values here?

No notion of key here, just assign the same key to all the values (e.g. key = 1)

Map task 1: [10, 5, 3, 700, 18, 4] → (1, heap(700, 18, 10))

Map task 2: [16, 4, 523, 100, 88] → (1, heap(523, 100, 88))

Map task 3: [3, 3, 3, 3, 300, 3] → (1, heap(300, 3, 3))

Map task 4: [8, 15, 20015, 89] → (1, heap(20015, 89, 15))

Then all the heaps will go to a single reducer responsible for the key 1

This works, but clearly not scalable…

38

Brainstorm: Top K
Idea: Use X different keys to balance load (e.g. X = 2 here)

Map task 1: [10, 5, 3, 700, 18, 4] → (1, heap(700, 18, 10))

Map task 2: [16, 4, 523, 100, 88] → (1, heap(523, 100, 88))

Map task 3: [3, 3, 3, 3, 300, 3] → (2, heap(300, 3, 3))

Map task 4: [8, 15, 20015, 89] → (2, heap(20015, 89, 15))

Then all the heaps will (hopefully) go to X different reducers

Rinse and repeat (what’s the runtime complexity?)

Monday 3/25

Stream processing

39

Application: Word Count

SELECT count(word) FROM data

GROUP BY word

cat data.txt
| tr -s '[[:punct:][:space:]]' '\n'
| sort | uniq -c

40

3/13/19

11

41

Using partial aggregation

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

42

Using partial aggregation

1. In parallel, send to worker:

– Compute word counts from individual files

– Collect result, wait until all finished

2. Then merge intermediate output

3. Compute word count on merged intermediates

map(key, value) -> list(<k’, v’>)
– Apply function to (key, value) pair and produces set

of intermediate pairs

reduce(key, list<value>) -> <k’, v’>
– Applies aggregation function to values
– Outputs result

43

MapReduce: Programming Interface

44

MapReduce: Programming Interface

map(key, value):
for each word w in value:

EmitIntermediate(w, "1");

reduce(key, list(values):
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

3/13/19

12

combine(list<key, value>) -> list<k,v>

– Perform partial aggregation on mapper node:
<the, 1>, <the, 1>, <the, 1> à <the, 3>

– reduce() should be commutative and associative

partition(key, int) -> int
– Need to aggregate intermediate vals with same key
– Given n partitions, map key to partition 0 ≤ i < n
– Typically via hash(key) mod n

45

MapReduce: Optimizations

46

Fault Tolerance in MapReduce

• Map worker writes intermediate output to local
disk, separated by partitioning. Once completed,
tells master node.

• Reduce worker told of location of map task
outputs, pulls their partition’s data from each
mapper, execute function across data

• Note:
– “All-to-all” shuffle b/w mappers and reducers

– Written to disk (“materialized”) b/w each stage

47

Fault Tolerance in MapReduce
• Master node monitors state of system

– If master failures, job aborts and client notified

• Map worker failure
– Both in-progress/completed tasks marked as idle
– Reduce workers notified when map task is re-executed on

another map worker

• Reducer worker failure
– In-progress tasks are reset to idle (and re-executed)
– Completed tasks had been written to global file system

48

Straggler Mitigation in MapReduce

• Tail latency means some workers finish late
• For slow map tasks, execute in parallel on second map

worker as “backup”, race to complete task

