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Caching 50.5* + Apache Kafka

COS 518: Advanced Computer Systems
Lecture 10

Michael Freedman
* Half of 101

• Tradeoff
– Fast:   Costly, small, close

– Slow:  Cheap, large, far

• Based on two assumptions
– Temporal location:  Will be accessed again soon

– Spatial location:  Nearby data will be accessed soon
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Basic caching rule
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Multi-level caching in hardware

https://en.wikipedia.org/wiki/Cache_memory 4

Caching in distributed systems

Web Caching and Zipf-like Distributions: Evidence and Implications 
Lee Breslau, Pei Cao, Li Fan, Graham Phillips, Scott Shenker
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• Web
– Web proxies at edge of enterprise networks

– “Server surrogates” in CDNs downstream of origin

• DNS
– Caching popular NS, A records

• File sharing
– Gnutella & flooding-based p2p networks
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Caching common in distributed systems
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Caching within datacenter systems
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Caching within datacenter systems
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Caching within datacenter systems
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• Write-through
– Data written simultaneously to cache and storage

• Write-back
– Data updated only in cache
– On cache eviction, written “back” to storage
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Cache management
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Caching within datacenter systems
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New system / hardware 
architectures:

New opportunities for caching
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Be Fast, Cheap and in Control 
with SwitchKV

Xiaozhou Li
Raghav Sethi

Michael Kaminsky
David G. Andersen

Michael J. Freedman

NSDI 2016

• Cache must process all queries and handle misses

• In our case, cache is small and hit ratio could be low
§ Throughput is bounded by the cache I/O

§ High latency for queries for uncached keys

Traditional architectures:  
High-overhead for skewed/dynamic workloads

Look-aside Look-through

clients

backends cache

miss
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clients

backends cache (load balancer)

miss failure point

Switches route requests directly to the appropriate nodes

• Latency can be minimized for all queries

• Throughput can scale out with # of backends

• Availability would not be affected by cache node failures

SwitchKV: content-aware routing
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backends

cacheOpenFlow Switches

clients

controller

• Clients encode key information in packet headers
§ Encode key hash in MAC for read queries   
§ Encode destination backend ID in IP for all queries

• Switches maintain forwarding rules and route query packets

Exploit SDN and switch hardware
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L2 table

TCAM table

Packet In Packet Out

miss

hit
exact match rule per cached key

match rule per physical machine Packet Out

to the cache
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• New challenges for cache updates
§ Only cache the hottest O(nlogn) items
§ Limited switch rule update rate

• Goal: react quickly to workload changes with minimal updates

Keep cache and switch rules updated
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cache backend

switch rule update top-k <key, load> list
(periodic)

fetch <key, value>

(instant)
bursty hot <key, value>

controller

Distributed Queues
& Apache Kafka
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What is pub sub ?

Producer Consumer

Producer
Consumer

Topic 1
Topic 2

Topic 3

subscribepublish(topic, msg)

Publish subscribe 
system

msg

msg

Automatic load balancing

Consumer

Producer

Broker Broker

Consumer

Producer

• Parties
– Producers write data to brokers

– Consumers read data from brokers

• Data stored in topics
– Topics split into partitions

– Partitions are replicated for          
failure recovery 
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Broker(s)

Topics

21

ne
w

Producer A1
Producer A2

Producer An
…

Producers always append to “tail”
(think: append to a file)

…

Kafka prunes “head” based on age or max size or “key”

Older msgs Newer msgs

Kafka topic

• Topic: name to which messages are published

Broker(s)

Topics
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Producer A1
Producer A2

Producer An
…

Producers always append to “tail”
(think: append to a file)

…

Older msgs Newer msgs

Kafka topic

Consumer group C1 Consumers use an “offset pointer” to
track/control their read progress

(and decide the pace of consumption)Consumer group C2

• A topic consists of partitions.

• Partition:  ordered + immutable sequence of msgs, 
continually appended to

• Number of partitions determines max consumer parallelism

Partitions
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Partition offsets
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• Offset:  messages in partitions are each assigned a unique 
(per partition) and sequential id called the offset
– Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1
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Wednesday:

Welcome to   BIG DATA
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