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» Tradeoff
— Fast: Costly, small, close

— Slow: Cheap, large, far

» Based on two assumptions
— Temporal location: Will be accessed again soon

— Spatial location: Nearby data will be accessed soon

Multi-level caching in hardware

Caching in distributed systems
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Caching common in distributed systems

+ Web
— Web proxies at edge of enterprise networks

— “Server surrogates” in CDNs downstream of origin

 DNS
— Caching popular NS, A records

+ File sharing
— Gnutella & flooding-based p2p networks

Caching within datacenter systems
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Caching within datacenter systems
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Cache management

+ Write-through
— Data written simultaneously to cache and storage

* Write-back
— Data updated only in cache
— On cache eviction, written “back” to storage

Caching within datacenter systems

function get_foo(foo_id)

foo = memcached_get("foo:" . foo_id) a@
— return foo if defined foo _98

foo = fetch_foo_from_database(foo_id)

memcached_set("foo:" . foo_id, foo) $8

return foo \8

New system / hardware
architectures:

New opportunities for caching
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Traditional architectures:
High-overhead for skewed/dynamic workloads
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Look-aside Look-through

» Cache must process all queries and handle misses

In our case, cache is small and hit ratio could be low
= Throughput is bounded by the cache I/O

= High latency for queries for uncached keys

SwitchKV: content-aware routing
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Switches route requests directly to the appropriate nodes

Latency can be minimized for all queries

Throughput can scale out with # of backends

Availability would not be affected by cache node failures

Exploit SDN and switch hardware

+ Clients encode key information in packet headers
= Encode key hash in MAC for read queries
= Encode destination backend ID in IP for all queries

+ Switches maintain forwarding rules and route query packets

L2 table "> [ Packet out |
exact match rule per cached key Packet Out
to the cache
* miss
match rule per physical machine Packet Out




Keep cache and switch rules updated

» New challenges for cache updates
= Only cache the hottest O(nlogn) items
= Limited switch rule update rate

» Goal: react quickly to workload changes with minimal updates
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What is pub sub ?

Distributed Queues

& Apache Kafka
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Automatic load balancing

* Parties
— Producers write data to brokers

— Consumers read data from brokers

+ Data stored in topics
— Topics split into partitions

— Partitions are replicated for
failure recovery Consumer Consumer




Topics

» Topic: name to which messages are published

Kafka prunes “head” based on age or max size or “key”
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Producers always append to “tail”
(think: append to a file)

Topics

Consumer group C1 Co.

s use an “offset pointer” to
track/control their read progress
Consumer group C2 (and decide the pace of consumption)
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Partitions
+ Atopic consists of partitions.
+ Partition: ordered + immutable sequence of msgs,
continually appended to
» Number of partitions determines max consumer parallelism
Anatomy of a Topic
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Partition offsets

» Offset: messages in partitions are each assigned a unique
(per partition) and sequential id called the offset

— Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1

Anfitomyy of a Topic
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