
1

Caching 50.5* + Apache Kafka

COS 518: Advanced Computer Systems
Lecture 10

Michael Freedman
* Half of 101

• Tradeoff
– Fast: Costly, small, close

– Slow: Cheap, large, far

• Based on two assumptions
– Temporal location: Will be accessed again soon

– Spatial location: Nearby data will be accessed soon

2

Basic caching rule

3

Multi-level caching in hardware

https://en.wikipedia.org/wiki/Cache_memory 4

Caching in distributed systems

Web Caching and Zipf-like Distributions: Evidence and Implications
Lee Breslau, Pei Cao, Li Fan, Graham Phillips, Scott Shenker

2

• Web
– Web proxies at edge of enterprise networks

– “Server surrogates” in CDNs downstream of origin

• DNS
– Caching popular NS, A records

• File sharing
– Gnutella & flooding-based p2p networks

5

Caching common in distributed systems

6

Caching within datacenter systems

load
balancers

front-end
web servers DB / backend

partitionedidentical identical

7

Caching within datacenter systems

load
balancers

cache

front-end
web servers DB / backend

partitionedidentical identical

8

Caching within datacenter systems

load
balancers

look-
through
cache

front-end
web servers DB / backend

partitionedidentical identical partitioned

3

9

Caching within datacenter systems

load
balancers

look-
aside
cache

front-end
web servers DB / backend

partitionedidentical identical partitioned

• Write-through
– Data written simultaneously to cache and storage

• Write-back
– Data updated only in cache
– On cache eviction, written “back” to storage

10

Cache management

11

Caching within datacenter systems

load
balancers

look-
aside
cache

front-end
web servers DB / backend

partitionedidentical identical partitioned

New system / hardware
architectures:

New opportunities for caching

12

4

Be Fast, Cheap and in Control
with SwitchKV

Xiaozhou Li
Raghav Sethi

Michael Kaminsky
David G. Andersen

Michael J. Freedman

NSDI 2016

• Cache must process all queries and handle misses

• In our case, cache is small and hit ratio could be low
§ Throughput is bounded by the cache I/O

§ High latency for queries for uncached keys

Traditional architectures:
High-overhead for skewed/dynamic workloads

Look-aside Look-through

clients

backends cache

miss

14

clients

backends cache (load balancer)

miss failure point

Switches route requests directly to the appropriate nodes

• Latency can be minimized for all queries

• Throughput can scale out with # of backends

• Availability would not be affected by cache node failures

SwitchKV: content-aware routing

15

backends

cacheOpenFlow Switches

clients

controller

• Clients encode key information in packet headers
§ Encode key hash in MAC for read queries
§ Encode destination backend ID in IP for all queries

• Switches maintain forwarding rules and route query packets

Exploit SDN and switch hardware

16

L2 table

TCAM table

Packet In Packet Out

miss

hit
exact match rule per cached key

match rule per physical machine Packet Out

to the cache

5

• New challenges for cache updates
§ Only cache the hottest O(nlogn) items
§ Limited switch rule update rate

• Goal: react quickly to workload changes with minimal updates

Keep cache and switch rules updated

17

cache backend

switch rule update top-k <key, load> list
(periodic)

fetch <key, value>

(instant)
bursty hot <key, value>

controller

Distributed Queues
& Apache Kafka

18

What is pub sub ?

Producer Consumer

Producer
Consumer

Topic 1
Topic 2

Topic 3

subscribepublish(topic, msg)

Publish subscribe
system

msg

msg

Automatic load balancing

Consumer

Producer

Broker Broker

Consumer

Producer

• Parties
– Producers write data to brokers

– Consumers read data from brokers

• Data stored in topics
– Topics split into partitions

– Partitions are replicated for
failure recovery

6

Broker(s)

Topics

21

ne
w

Producer A1
Producer A2

Producer An
…

Producers always append to “tail”
(think: append to a file)

…

Kafka prunes “head” based on age or max size or “key”

Older msgs Newer msgs

Kafka topic

• Topic: name to which messages are published

Broker(s)

Topics

22

ne
w

Producer A1
Producer A2

Producer An
…

Producers always append to “tail”
(think: append to a file)

…

Older msgs Newer msgs

Kafka topic

Consumer group C1 Consumers use an “offset pointer” to
track/control their read progress

(and decide the pace of consumption)Consumer group C2

• A topic consists of partitions.

• Partition: ordered + immutable sequence of msgs,
continually appended to

• Number of partitions determines max consumer parallelism

Partitions

23

Partition offsets

24

• Offset: messages in partitions are each assigned a unique
(per partition) and sequential id called the offset
– Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1

7

Wednesday:

Welcome to BIG DATA

25

