Caching 50.5* + Apache Kafka

Basic caching rule

COS 518: Advanced Computer Systems
Lecture 10

Michael Freedman

* Half of 101

» Tradeoff
— Fast: Costly, small, close

— Slow: Cheap, large, far

» Based on two assumptions
— Temporal location: Will be accessed again soon

— Spatial location: Nearby data will be accessed soon

Multi-level caching in hardware

Caching in distributed systems

L4
k—i» Cache | Remote
Memories
(Remote cache)

(cc-NUMA System)

—8— DEC-Trace —8— UCB-Trace —=— PISA-Trace
10000 Sy -~ 10000 g+
- 1000 -
§ 1000 g g 10
H H H
H H H
g 100 S 1 g o
& & &
< S S
s 5 10 3
= 10 = = 10
1 1 1
110 100 10001e+0dle+05le+06 1 10 100 1000 le+041e+05 1 10 100 1000 1e+041e+05
Document Ranking Document Ranking Document Ranking
—=— QuestNet-Trace —&— NLANR-Trace —=&— Funet-Trace
10000 F 1000 10000
g 1000 g 2 1000
£ 2 100 4
$ & g
g 0 e} g
s T 10 s
®= 10 = = 10
1 1 1
110 100 1000le+04le+0Sle+06 1 10 100 1000 1e+041e+05le+06 110 100 10001e+04le+05le+06
Document Ranking Document Ranking Document Ranking

Web Caching and Zipf-like Distributions: Evidence and Implications
Lee Breslau, Pei Cao, Li Fan, Graham Phillips, Scott Shenker 4

Caching common in distributed systems

+ Web
— Web proxies at edge of enterprise networks

— “Server surrogates” in CDNs downstream of origin

 DNS
— Caching popular NS, A records

+ File sharing
— Gnutella & flooding-based p2p networks

Caching within datacenter systems

load front-end
balancers web servers DB / backend
identical identical partitioned

Caching within datacenter systems

)
)
)|
load front-end DB / backend
balancers web servers
identical identical partitioned

Caching within datacenter systems

/

load front-end

DB / backend
balancers web servers

identical identical partitioned partitioned

Caching within datacenter systems

load front-end
balancers web servers === DB / backend
identical identical partitioned partitioned

Cache management

+ Write-through
— Data written simultaneously to cache and storage

* Write-back
— Data updated only in cache
— On cache eviction, written “back” to storage

Caching within datacenter systems

function get_foo(foo_id)

foo = memcached_get("foo:" . foo_id) a@
— return foo if defined foo _98

foo = fetch_foo_from_database(foo_id)

memcached_set("foo:" . foo_id, foo) $8

return foo \8

New system / hardware
architectures:

New opportunities for caching

Be Fast, Cheap and in Control
with SwitchKV

Xiaozhou Li
Raghav Sethi
Michael Kaminsky
David G. Andersen
Michael J. Freedman

NSDI 2016

Carnegie
PRINCETON A
UNIVERSITY untel Mellon’

University

Traditional architectures:
High-overhead for skewed/dynamic workloads

clients clients
oooooo ooo0oo0ooo

,b':?s ailure point
Séfé\\I:I aééh‘:fl‘ :

backends cache backends cache (load balancer)

Look-aside Look-through

» Cache must process all queries and handle misses

In our case, cache is small and hit ratio could be low
= Throughput is bounded by the cache I/O

= High latency for queries for uncached keys

SwitchKV: content-aware routing

clients OO DVD oo

controller D—(OpenFlow 3witches)—>:| cache

backends 8 Bv 8 8

Switches route requests directly to the appropriate nodes

Latency can be minimized for all queries

Throughput can scale out with # of backends

Availability would not be affected by cache node failures

Exploit SDN and switch hardware

+ Clients encode key information in packet headers
= Encode key hash in MAC for read queries
= Encode destination backend ID in IP for all queries

+ Switches maintain forwarding rules and route query packets

L2 table "> [Packet out |
exact match rule per cached key Packet Out
to the cache
* miss
match rule per physical machine Packet Out

Keep cache and switch rules updated

» New challenges for cache updates
= Only cache the hottest O(nlogn) items
= Limited switch rule update rate

» Goal: react quickly to workload changes with minimal updates

switch rule update top-k <key, load> list
1 ((periodic)
fetch <key, value>
controller cache (< backe s

t bursty hot <key, value>
(instant)

What is pub sub ?

Distributed Queues

& Apache Kafka

publish(topic, msg) subscribe m
N ’
*

‘;o

msg

Publish subscribe V'

0..
e 2y

msg

Automatic load balancing

* Parties
— Producers write data to brokers

— Consumers read data from brokers

+ Data stored in topics
— Topics split into partitions

— Partitions are replicated for
failure recovery Consumer Consumer

Topics

» Topic: name to which messages are published

Kafka prunes “head” based on age or max size or “key”

{—1—\ Producer A1

Rl Producer A2
JEEEEEEE I":I<—I Producer An

Older msgs Newer msgs

Producers always append to “tail”
(think: append to a file)

Topics

Consumer group C1 Co.

s use an “offset pointer” to
track/control their read progress
Consumer group C2 (and decide the pace of consumption)

v Producer A1

LEimiErE Producer A2
I I I I I I I I leéI Producer An

Older msgs Newer msgs

Producers always append to “tail”
(think: append to a file)

Broker(s)
22

Broker(s)
21
Partitions
+ Atopic consists of partitions.
+ Partition: ordered + immutable sequence of msgs,
continually appended to
» Number of partitions determines max consumer parallelism
Anatomy of a Topic
Parglmn 0123456789;:%;
7\
Parttion 0123455739;"Eg
Old New
23

Partition offsets

» Offset: messages in partitions are each assigned a unique
(per partition) and sequential id called the offset

— Consumers track their pointers via (offset, partition, topic) tuples

Consumer group C1

Anfitomyy of a Topic

Partition 1 ‘H‘;
0 03 5578901}2:\

Partition
1

Partition
2

Old

New

24

Wednesday:

Welcome to B I G DATA

