
1

MVCC and

Distributed Txns (Spanner)

COS 518: Advanced Computer Systems
Lecture 6

Michael Freedman

• Provides semantics as if only one transaction was
running on DB at time, in serial order

+ Real-time guarantees

• 2PL: Pessimistically get all the locks first

• OCC: Optimistically create copies, but then
recheck all read + written items before commit

2

2PL & OCC = strict serialization

Multi-version
concurrency control

Generalize use of multiple versions of objects

3

• Maintain multiple versions of objects, each with own
timestamp. Allocate correct version to reads.

• Prior example of MVCC:

4

Multi-version concurrency control

2

• Maintain multiple versions of objects, each with own
timestamp. Allocate correct version to reads.

• Unlike 2PL/OCC, reads never rejected

• Occasionally run garbage collection to clean up

5

Multi-version concurrency control

• Split transaction into read set and write set
– All reads execute as if one “snapshot”
– All writes execute as if one later “snapshot”

• Yields snapshot isolation < serializability

6

MVCC Intuition

• Intuition: Bag of marbles: ½ white, ½ black

• Transactions:
– T1: Change all white marbles to black marbles
– T2: Change all black marbles to white marbles

• Serializability (2PL, OCC)
– T1 → T2 or T2 → T1

– In either case, bag is either ALL white or ALL black

• Snapshot isolation (MVCC)
– T1 → T2 or T2 → T1 or T1 || T2

– Bag is ALL white, ALL black, or ½ white ½ black
7

Serializability vs. Snapshot isolation

• Transactions are assigned timestamps, which may
get assigned to objects those txns read/write

• Every object version OV has both read and write TS
– ReadTS: Largest timestamp of txn that reads OV

– WriteTS: Timestamp of txn that wrote OV

8

Timestamps in MVCC

3

• Perform write of object O or abort if conflicting:
– Find OV s.t. max { WriteTS(OV) | WriteTS(OV) <= TS(T) }
– # Abort if another T’ exists and has read O after T
– If ReadTS(OV) > TS(T)

• Abort and roll-back T
– Else

• Create new version OW

• Set ReadTS(OW) = WriteTS(OW) = TS(T)
9

Executing transaction T in MVCC
• Find version of object O to read:

– # Determine the last version written before read snapshot time
– Find OV s.t. max { WriteTS(OV) | WriteTS(OV) <= TS(T) }
– ReadTS(OV) = max(TS(T), ReadTS(OV))
– Return OV to T

write(O)
by TS=3

10

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

write(O)
by TS=5

11

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

W(1) = 3
R(1) = 3

12

Digging deeper

O

W(2) = 5
R(2) = 5

TS = 3

txn txn

TS = 4

txn

TS = 5

Find v such that max WriteTS(v) <= (TS = 4)
Þ v = 1 has (WriteTS = 3) <= 4

If ReadTS(1) > 4, abort
Þ 3 > 4: false

Otherwise, write object

write(O)
by TS = 4

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

W(1) = 3
R(1) = 3

4

13

Digging deeper

O

W(2) = 5
R(2) = 5

TS = 3

txn txn

TS = 4

txn

TS = 5

W(3) = 4
R(3) = 4

Find v such that max WriteTS(v) <= (TS = 4)
Þ v = 1 has (WriteTS = 3) <= 4

If ReadTS(1) > 4, abort
Þ 3 > 4: false

Otherwise, write object

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

W(1) = 3
R(1) = 3

14

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

BEGIN Transaction
tmp = READ(O)
WRITE (O, tmp + 1)

END Transaction

Find v such that max WriteTS(v) <= (TS = 5)
Þ v = 1 has (WriteTS = 3) <= 5

Set R(1) = max(5, R(1)) = 5

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

W(1) = 3
R(1) = 3R(1) = 5

15

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

Find v such that max WriteTS(v) <= (TS = 5)
Þ v = 1 has (WriteTS = 3) <= 5

If ReadTS(1) > 5, abort
Þ 5 > 5: false

Otherwise, write object

BEGIN Transaction
tmp = READ(O)
WRITE (O, tmp + 1)

END Transaction

W(2) = 5
R(2) = 5

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

W(1) = 3
R(1) = 3R(1) = 5

16

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

W(2) = 5
R(2) = 5

Find v such that max WriteTS(v) <= (TS = 4)
Þ v = 1 has (WriteTS = 3) <= 4

If ReadTS(1) > 4, abort
Þ 5 > 4: true

write(O)
by TS = 4

W(1) = 3
R(1) = 3

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

R(1) = 5

5

17

Digging deeper

O

TS = 3

txn txn

TS = 4

txn

TS = 5

W(2) = 5
R(2) = 5

W(1) = 3
R(1) = 3

Notation

W(1) = 3: Write creates version 1
with WriteTS = 3

R(1) = 3: Read of version 1
returns timestamp 3

BEGIN Transaction
tmp = READ(O)
WRITE (P, tmp + 1)

END Transaction

Find v such that max WriteTS(v) <= (TS = 4)
Þ v = 1 has (WriteTS = 3) <= 4

Set R(1) = max(4, R(1)) = 5

R(1) = 5R(1) = 5

Then write on P succeeds as well

Distributed Transactions

18

19

Consider partitioned data over servers

O

P

Q

• Why not just use 2PL?
– Grab locks over entire read and write set

– Perform writes

– Release locks (at commit time)

L

L

L

U

U

U

R

R W

W

20

Consider partitioned data over servers

O

P

Q

• How do you get serializability?

– On single machine, single COMMIT op in the WAL

– In distributed setting, assign global timestamp to txn
(at sometime after lock acquisition and before commit)

• Centralized txn manager
• Distributed consensus on timestamp (not all ops)

L

L

L

U

U

U

R

R W

W

6

21

Strawman: Consensus per txn group?

O

P

Q

L

L

L

U

U

U

R

R W

W

R

S

• Single Lamport clock, consensus per group?
– Linearizability composes!
– But doesn’t solve concurrent, non-overlapping txn problem

Spanner: Google’s Globally-
Distributed Database

OSDI 2012

22

• Dozens of zones (datacenters)

• Per zone, 100-1000s of servers

• Per server, 100-1000 partitions (tablets)

• Every tablet replicated for fault-tolerance (e.g., 5x)

23

Google’s Setting

24

Scale-out vs. fault tolerance

O

P

QQQ

PP

OO

• Every tablet replicated via Paxos (with leader election)

• So every “operation” within transactions across tablets
actually a replicated operation within Paxos RSM

• Paxos groups can stretch across datacenters!
– (COPS took same approach within datacenter)

7

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

25

• “Global wall-clock time” with bounded uncertainty

time

earliest latest

TT.now()

2*ε

26

TrueTime

Consider event enow which invoked tt = TT.new():
Guarantee: tt.earliest <= tabs(enow) <= tt.latest

Timestamps and TrueTime

T

Pick s > TT.now().latest

Acquired locks Release locks

Wait until TT.now().earliest > ss

average ε

Commit wait

average ε

27

Commit Wait and Replication

T

Acquired locks

Start
consensus

Notify
followers

Commit wait donePick s

28

Achieve
consensus

Release locks

8

Client:

1. Issues reads to leader of each tablet group,
which acquires read locks and returns most recent data

2. Locally performs writes

3. Chooses coordinator from set of leaders, initiates commit

4. Sends commit message to each leader,
include identify of coordinator and buffered writes

5. Waits for commit from coordinator

29

Client-driven transactions
• On commit msg from client, leaders acquire local write locks

– If non-coordinator:
• Choose prepare ts > previous local timestamps
• Log prepare record through Paxos
• Notify coordinator of prepare timestamp

– If coordinator:
• Wait until hear from other participants
• Choose commit timestamp >= prepare ts, > local ts
• Logs commit record through Paxos
• Wait commit-wait period
• Sends commit timestamp to replicas, other leaders, client

• All apply at commit timestamp and release locks
30

Commit Wait and 2-Phase Commit

Commit Wait and 2-Phase Commit

TC

Acquired locks

TP1

TP2

31

Acquired locks

Acquired locks

Compute sp for each

1. Client issues reads to leader of each tablet group,
which acquires read locks and returns most recent data

Commit Wait and 2-Phase Commit

TC

Acquired locks

TP1

TP2

32

Start logging Done logging

Prepared

Acquired locks

Acquired locks

Compute sp for each
Send sp

2. Locally performs writes
3. Chooses coordinator from set of leaders, initiates commit
4. Sends commit msg to each leader, incl. identity of coordinator

9

Commit Wait and 2-Phase Commit

TC

Acquired locks

TP1

TP2

33

Start logging Done logging

Prepared

Release locks

Acquired locks Release locks

Acquired locks Release locks

Notify participants sc

Commit wait doneCompute sp for each
Compute overall sc

Committed

Send sp

5. Client waits for commit from coordinator

Example

34

TP

Remove X
from friend list

Remove myself
from X’s friend list

sp= 6

sp= 8

sc= 8 s = 15

Risky post P

sc= 8

Time <8
[X]

[me]

15

TC T2

[P]
My friends
My posts
X’s friends

8
[]

[]

• Given global timestamp, can implement read-only
transactions lock-free (snapshot isolation)

• Step 1: Choose timestamp sread = TT.now.latest()

• Step 2: Snapshot read (at sread) to each tablet
– Can be served by any up-to-date replica

35

Read-only optimizations

Disruptive idea:

Do clocks really need to be
arbitrarily unsynchronized?

Can you engineer some max divergence?

36

10

TrueTime Architecture

Datacenter 1 Datacenter n…Datacenter 2

GPS
timemaster

GPS
timemaster

GPS
timemaster

Atomic-clock
timemaster

GPS
timemaster

Client

37

GPS
timemaster

Compute reference [earliest, latest] = now ± ε

time

ε

0sec 30sec 60sec 90sec

+6ms

now = reference now + local-clock offset

ε = reference ε + worst-case local-clock drift
= 1ms + 200 μs/sec

38

TrueTime implementation

• What about faulty clocks?
– Bad CPUs 6x more likely in 1 year of empirical data

Known unknowns > unknown unknowns

Rethink algorithms to reason about
uncertainty

39

Monday lecture
Caching

Project Proposals due
Monday night, 11:59pm

40

