
Consensus

COS 518: Advanced Computer Systems
Lecture 4

Andrew Or, Michael Freedman
RAFT slides heavily based on those from Diego Ongaro and John Ousterhout

• Provide behavior of a single copy of object:
– Read should return the most recent write
– Subsequent reads should return same value, until next write

• Telephone intuition:
1. Alice updates Facebook post
2. Alice calls Bob on phone: “Check my Facebook post!”
3. Bob reads Alice’s wall, sees her post

2

Recall: Linearizability (Strong Consistency)

Two phase commit protocol

Client C

Primary P

Backup A B

1. C à P: “request <op>”

2. P à A, B: “prepare <op>”

3. A, B à P: “prepared” or “error”

4. P à C: “result exec<op>” or “failed”

5. P à A, B: “commit <op>”

3

What if primary fails?
Backup fails?

“Okay” (i.e., op is stable) if
written to > ½ nodes

Two phase commit protocol

Client C

Primary P

Backup A B

1. C à P: “request <op>”

2. P à A, B: “prepare <op>”

3. A, B à P: “prepared” or “error”

4. P à C: “result exec<op>” or “failed”

5. P à A, B: “commit <op>”

4

Two phase commit protocol

Client C

Primary P

Backup A B

5

> ½
nodes

> ½
nodes

• Commit sets always overlap ≥ 1

• Any >½ nodes guaranteed to see
committed op

• …provided set of nodes consistent

Consensus

Definition:

1. A general agreement about something

2. An idea or opinion that is shared by all the people in a
group

Origin: Latin, from consentire

6

Group of servers attempting:

• Make sure all servers in group receive the same updates
in the same order as each other

• Maintain own lists (views) on who is a current member of
the group, and update lists when somebody leaves/fails

• Elect a leader in group, and inform everybody

• Ensure mutually exclusive (one process at a time only)
access to a critical resource like a file

7

Consensus used in systems
• Safety

– Only a single value is chosen
– Only a proposed value can be chosen
– Only chosen values are learned by processes

• Liveness ***
– Some proposed value eventually chosen if fewer than

half of processes fail
– If value is chosen, a process eventually learns it

8

Paxos: the original consensus protocol

Basic fault-tolerant  
Replicated State Machine (RSM)

approach

1. Consensus protocol to elect leader

2. 2PC to replicate operations from leader

3. All replicas execute ops once committed

9

Why bother with a leader?

Not necessary, but …

• Decomposition: normal operation vs. leader changes
• Simplifies normal operation (no conflicts)
• More efficient than leader-less approaches

• Obvious place to handle non-determinism

10

Raft: A Consensus Algorithm  
for Replicated Logs

Diego Ongaro and John Ousterhout
Stanford University

11

• Replicated log => replicated state machine
– All servers execute same commands in same order

• Consensus module ensures proper log replication

Goal: Replicated Log

add jmpmov shl
Log

Consensus 
Module

State  
Machine

add jmp mov shl
Log

Consensus 
Module

State  
Machine

add jmp mov shl
Log

Consensus 
Module

State  
Machine

Servers

Clients

shl

12

1. Leader election

2. Normal operation (basic log replication)

3. Safety and consistency after leader changes

4. Neutralizing old leaders

5. Client interactions

6. Reconfiguration

Raft Overview

13

• At any given time, each server is either:
– Leader: handles all client interactions, log replication
– Follower: completely passive
– Candidate: used to elect a new leader

• Normal operation: 1 leader, N-1 followers

Follower Candidate Leader

Server States

14

• Servers start as followers
• Leaders send heartbeats (empty AppendEntries RPCs) to

maintain authority
• If electionTimeout elapses with no RPCs (100-500ms),

follower assumes leader has crashed and starts new election

Follower Candidate Leader

start
timeout, 

start election
receive votes from 
majority of servers

timeout, 
new election

discover server with 
 higher termdiscover current leader 

or higher term

“step  
down”

Liveness Validation

15

• Time divided into terms
– Election (either failed or resulted in 1 leader)
– Normal operation under a single leader

• Each server maintains current term value

• Key role of terms: identify obsolete information

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal OperationSplit Vote

Terms (aka epochs)

16

• Start election:
– Increment current term, change to candidate state, vote for self

• Send RequestVote to all other servers, retry until either:

1. Receive votes from majority of servers:
• Become leader
• Send AppendEntries heartbeats to all other servers

2. Receive RPC from valid leader:
• Return to follower state

3. No-one wins election (election timeout elapses):
• Increment term, start new election

Elections

17

• Safety: allow at most one winner per term
– Each server votes only once per term (persists on disk)
– Two different candidates can’t get majorities in same term

• Liveness: some candidate must eventually win
– Each choose election timeouts randomly in [T, 2T]
– One usually initiates and wins election before others start
– Works well if T >> network RTT

Servers

Voted for
candidate A

B can’t also
get majority

Elections

18

• Log entry = < index, term, command >
• Log stored on stable storage (disk); survives crashes
• Entry committed if known to be stored on majority of servers

– Durable / stable, will eventually be executed by state machines

1  
add

1 2 3 4 5 6 7 8
3  

jmp
1  

cmp
1  
ret

2  
mov

3  
div

3  
shl

3  
sub

1  
add

3  
jmp

1  
cmp

1  
ret

2  
mov

1  
add

3  
jmp

1  
cmp

1  
ret

2  
mov

3  
div

3  
shl

3  
sub

1  
add

1  
cmp

1  
add

3  
jmp

1  
cmp

1  
ret

2  
mov

3  
div

3  
shl

leader

log index

followers

committed entries

term

command

19

Log Structure

• Client sends command to leader
• Leader appends command to its log
• Leader sends AppendEntries RPCs to followers
• Once new entry committed:

– Leader passes command to its state machine, sends result to client
– Leader piggybacks commitment to followers in later AppendEntries
– Followers pass committed commands to their state machines

20

Normal operation

add jmpmov shl
Log

Consensus 
Module

State  
Machine

add jmp mov shl
Log

Consensus 
Module

State  
Machine

add jmpmov shl
Log

Consensus 
Module

State  
Machine

shl

• Crashed / slow followers?
– Leader retries RPCs until they succeed

• Performance is optimal in common case:
– One successful RPC to any majority of servers

21

Normal operation

add jmpmov shl
Log

Consensus 
Module

State  
Machine

add jmp mov shl
Log

Consensus 
Module

State  
Machine

add jmpmov shl
Log

Consensus 
Module

State  
Machine

shl

• If log entries on different server have same index and term:
– Store the same command
– Logs are identical in all preceding entries

• If given entry is committed, all preceding also committed

22

Log Operation: Highly Coherent

1  
add

1 2 3 4 5 6
3  

jmp
1  

cmp
1  

ret
2  

mov
3  

div

4  
sub

1  
add

3  
jmp

1  
cmp

1  
ret

2  
mov

server1

server2

• AppendEntries has <index,term> of entry preceding new ones

• Follower must contain matching entry; otherwise it rejects

• Implements an induction step, ensures coherency

23

Log Operation: Consistency Check

1  
add

3  
jmp

1  
cmp

1  
ret

2  
mov

1  
add

1  
cmp

1  
ret

2  
mov

leader

follower

1 2 3 4 5

1  
add

3  
jmp

1  
cmp

1  
ret

2  
mov

1  
add

1  
cmp

1  
ret

1  
shl

leader

follower

AppendEntries succeeds:
matching entry

AppendEntries fails:
mismatch

• New leader’s log is truth, no special steps, start normal operation
– Will eventually make follower’s logs identical to leader’s
– Old leader may have left entries partially replicated

• Multiple crashes can leave many extraneous log entries

1 2 3 4 5 6 7log index

1 1

1 1

5

5

6 6 6

6

1 1 5 5

1 41

1 1

7 7

2 2 3 3 3

2

7

term s1

s2

s3

s4

s5

24

Leader Changes

Leader changes can result in log inconsistencies
25

Challenge: Log Inconsistencies

1 41 1 4 5 5 6 6 6Leader for term 8

1 41 1 4 5 5 6 6

1 41 1

1 41 1 4 5 5 6 6 6 6

1 41 1 4 5 5 6 6 6

1 41 1 4

1 1 1

Possible  
followers

4 4

7 7

2 2 33 3 3 32

(a)

(b)

(c)

(d)

(e)

(f)

Missing  
Entries

Extraneous 
Entries

1 2 3 4 5 6 7 8 9 10 11 12

Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7

1 2 3 4 5 6 7 8 9 10 11 12

1 41 1

1 1 1
Followers

2 2 33 3 3 32

(a)

(b)

nextIndex

• New leader must make follower logs consistent with its own
– Delete extraneous entries
– Fill in missing entries

• Leader keeps nextIndex for each follower:
– Index of next log entry to send to that follower
– Initialized to (1 + leader’s last index)

• If AppendEntries consistency check fails, decrement nextIndex, try again

Repairing Follower Logs

1 41 1 4 5 5 6 6 6Leader for term 7

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1Before repair 2 2 33 3 3 32(f)

1 1 1 4(f)

nextIndex

After repair

• Raft safety property: If leader has decided log entry is
committed, entry will be present in logs of all future leaders

• Why does this guarantee higher-level goal?
1. Leaders never overwrite entries in their logs
2. Only entries in leader’s log can be committed
3. Entries must be committed before applying to state machine

Committed → Present in future leaders’ logs
Restrictions on 

commitment
Restrictions on 
leader election

28

Safety Requirement

Once log entry applied to a state machine, no other state
machine must apply a different value for that log entry

• Elect candidate most likely to contain all committed entries
– In RequestVote, candidates incl. index + term of last log entry
– Voter V denies vote if its log is “more complete”:

– pick log whose last entry has the higher term
– if last log term is the same, then pick longer log

– Leader will have “most complete” log among electing majority

29

Picking the Best Leader

1 21 1 2

1 2 3 4 5

1 21 1

1 21 1 2
Unavailable during
leader transition

Committed?
Can’t tell

which entries
committed!

s1

s2

30

Which one is more complete?

1 1 1 2 3

1 1 1 1 1 1 1

31

Which one is more complete?

1 1 1 2 3

1 1 1 2 3 3 3

32

Which one is more complete?

1 1 1 2 3

1 1 4

• Case #1: Leader decides entry in current term is committed

• Safe: leader for term 3 must contain entry 4

33

Committing Entry from Current Term
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

2

2

2

2

2 Can’t be elected as  
leader for term 3

AppendEntries just succeeded

Leader for term 2

• Case #2: Leader trying to finish committing entry from earlier

• Entry 3 not safely committed:
– s5 can be elected as leader for term 5

– If elected, it will overwrite entry 3 on s1, s2, and s3
34

Committing Entry from Earlier Term
1 2 3 4 5

1 1

1 1

1 1

1

2

1

1 1

s1

s2

s3

s4

s5

2

2

3

4

3

AppendEntries just succeeded

Leader for term 4

3

Linearizable Reads?
• Not yet…

• 5 nodes: A (leader), B, C, D, E
• A is partitioned from B, C, D, E
• B is elected as new leader, commits a bunch of ops
• But A still thinks he’s the leader = can answer reads
• If a client contacts A, the client will get stale values!

• Fix: Ensure you can contact majority before serving reads
• … by committing an extra log entry for each read
• This guarantees you are still the rightful leader

Monday lecture

1. Consensus papers

2. From single register consistency
to multi-register transactions

36

Leader temporarily disconnected
→ other servers elect new leader
→ old leader reconnected

→ old leader attempts to commit log entries

• Terms used to detect stale leaders (and candidates)
– Every RPC contains term of sender
– Sender’s term < receiver:

• Receiver: Rejects RPC (via ACK which sender processes…)
– Receiver’s term < sender:

• Receiver reverts to follower, updates term, processes RPC

• Election updates terms of majority of servers
– Deposed server cannot commit new log entries

37

Neutralizing Old Leaders
• Send commands to leader

– If leader unknown, contact any server, which redirects client to leader

• Leader only responds after command logged, committed,
and executed by leader

• If request times out (e.g., leader crashes):
– Client reissues command to new leader (after possible redirect)

• Ensure exactly-once semantics even with leader failures
– E.g., Leader can execute command then crash before responding
– Client should embed unique ID in each command
– This client ID included in log entry
– Before accepting request, leader checks log for entry with same id

38

Client Protocol

Reconfiguration

39

• View configuration: { leader, { members }, settings }
• Consensus must support changes to configuration

– Replace failed machine
– Change degree of replication

• Cannot switch directly from one config to another:
conflicting majorities could arise

40

Configuration Changes

Cold Cnew
Server 1
Server 2
Server 3
Server 4
Server 5

time

Majority of Cold

Majority of Cnew

• Joint consensus in intermediate phase: need majority of
both old and new configurations for elections, commitment

• Configuration change just a log entry; applied immediately
on receipt (committed or not)

• Once joint consensus is committed, begin replicating log
entry for final configuration

timeCold+new entry 
committed

Cnew entry 
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

41

2-Phase Approach via Joint Consensus

• Any server from either configuration can serve as leader

• If leader not in Cnew, must step down once Cnew committed

timeCold+new entry 
committed

Cnew entry 
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

42

2-Phase Approach via Joint Consensus

leader not in Cnew  
steps down here

Viewstamped Replication:

 A new primary copy method to support highly-
available distributed systems
Oki and Liskov, PODC 1988

43

• Strong leader
– Log entries flow only from leader to other servers
– Select leader from limited set so doesn’t need to “catch up”

• Leader election
– Randomized timers to initiate elections

• Membership changes
– New joint consensus approach with overlapping majorities
– Cluster can operate normally during configuration changes

44

Raft vs. VR

View changes on failure

Primary P

Backup A B

1. Backups monitor primary

2. If a backup thinks primary failed,
initiate View Change (leader election)

45

View changes on failure

Primary PBackup A

1. Backups monitor primary

2. If a backup thinks primary failed,
initiate View Change (leader election)

3. Inituitive safety argument:
– View change requires f+1 agreement
– Op committed once written to f+1 nodes
– At least one node both saw write and in

new view

4. More advanced: Adding or removing
nodes (“reconfiguration”)

Requires 2f + 1 nodes
to handle f failures

46

