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Replication and Consistency

COS 518: Advanced Computer Systems
Lecture 3

Michael Freedman

• Let’s say A and B send an op. 
• All readers see A → B ?
• All readers see B → A ? 
• Some see A → B and others  B → A ? 

Correct consistency model?

A B

Time and distributed systems

• With multiple events, what happens first?

A shoots B

B diesA dies

B shoots A

Just use time stamps?

• Clients ask time server for time and adjust local 
clock, based on response

• How to correct for the network latency?
RTT =  Time_received – Time_sent

Time_local_new = Time_server + (RTT / 2)

p Time server,S
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Is this sufficient?
• Server latency due to load?

– If can measure:  Time_local_new = Time_server + (RTT / 2  + lag)

• But what about asymmetric latency?
– RTT / 2 not sufficient!

• What do we need to measure RTT?
– Requires no clock drift!

• What about “almost” concurrent events?
– Clocks have micro/milli-second precision

Order by logical events,
not by wall clock time
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• Let’s say A and B send an op. 
• All readers see A → B ?
• All readers see B → A ? 
• Some see A → B and others  B → A ? 

Correct consistency model?

A B

“Lazy replication”

A

OK

• Acknowledge writes immediately
• Lazily replicate elsewhere (push or pull)

• Eventual consistency:  Bayou, Dynamo, …

A
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“Eager replication”

A

OK

• On a write, immediately replicate elsewhere
• Wait until write committed to sufficient # of 

nodes before acknowledging

A
OKOK
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Strong 
consistency

Eventual 
consistency

Consistency models

Sequential
Consistency

Causal
Consistency

• Provide behavior of a single copy of object:
– Read should return the most recent write

– Subsequent reads should return same value, until next write

• Telephone intuition:
1. Alice updates Facebook post

2. Alice calls Bob on phone: “Check my Facebook post!”

3. Bob read’s Alice’s wall, sees her post

11

Strong consistency
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Strong Consistency?

write(A,1)

1

success

read(A)

Phone call: Ensures happens-before relationship, 
even through “out-of-band” communication
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Strong Consistency?

write(A,1)

1

success

read(A)

One cool trick: Delay responding to writes/ops 
until properly committed
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Strong Consistency?  This is buggy! 

write(A,1)

success

committed

• Isn’t sufficient to return value of third node:                         
It doesn’t know precisely when op is “globally” committed

• Instead: Need to actually order read operation

eager
replication

1

read(A)
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Strong Consistency!

write(A,1)

success

1

read(A)

Order all operations via (1) leader, (2) consensus

• Linearizability (Herlihy and Wang 1991)

1. All servers execute all ops in some identical sequential order 

2. Global ordering preserves each client’s own local ordering 

3. Global ordering preserves real-time guarantee
• All ops receive global time-stamp using a sync’d clock
• If tsop1(x) < tsop2(y), OP1(x) precedes OP2(y) in sequence

Strong consistency = linearizability

• Once write completes, all later reads (by wall-clock start time) 
should return value of that write or value of later write.

• Once read returns particular value, all later reads should return 
that value or value of later write.
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Intuition:  Real-time ordering

write(A,1)

success

committed

1

read(A)

• Once write completes, all later reads (by wall-clock start time) 
should return value of that write or value of later write.

• Once read returns particular value, all later reads should return 
that value or value of later write.

• Sequential = Linearizability – real-time ordering
1. All servers execute all ops in some identical sequential order 

2. Global ordering preserves each client’s own local ordering 

Weaker: Sequential consistency

• With concurrent ops, “reordering” of ops (w.r.t. real-time ordering) 
acceptable, but all servers must see same order

– e.g., linearizability cares about time
sequential consistency cares about program order

19

Sequential Consistency

write(A,1)

success

read(A)

In example, system orders read(A) before write(A,1)

0

Valid Sequential Consistency?

ü x
• Why?		Because	P3	and	P4	don’t	agree	on	order	of	ops.	

Doesn’t	matter	when	events	took	place	on	diff	machine,	
as	long	as	proc’s AGREE	on	order.		

• What	if	P1	did	both	W(x)a	and	W(x)b?	
- Neither	valid,	as	(a)	doesn’t	preserve	local	ordering
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Even Weaker: Causal consistency

• Potentially causally related operations?
– R(x) then W(x)
– R(x) then W(y), x ≠ y

• Necessary condition: Potentially causally-related writes 
must be seen by all processes in the same order

– Concurrent writes may be seen in a different order on 
different machines

• Allowed with causal consistency, but not with sequential

• W(x)b and W(x)c are concurrent
– So all processes don’t see them in the same order

• P3 and P4 read the values ‘a’ and ‘b’ in order as 
potentially causally related. No ‘causality’ for ‘c’.

Causal consistency

Causal consistency

• Why not sequentially consistent?  
– P3 and P4 see W(x)b and W(x)c in different order.

• But fine for causal consistency
– Writes W(x)b and W(x)c are not causally dependent

• Write after write has no dependencies

Causal consistency

ü
x

§ A: Violation: W(x)b potentially dependent on W(x)a

§ B: Correct.  P2 doesn’t read value of a before W
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Causal consistency

• Requires keeping track of which processes 
have seen which writes

– Needs a dependency graph of which op is 
dependent on which other ops

– …or use vector timestamps!

See COS 418: https://www.cs.princeton.edu/courses/archive/fall17/cos418/docs/L4-time.pptx

Implementing strong 
consistency
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Recall “eager replication”
• On a write, immediately replicate elsewhere

• Wait until write committed to sufficient # of 
nodes before acknowledging

• What does this mean?
27

A

OK

A
OKOK

Two phase commit protocol

Client C

Primary P

Backup A B

1. C à P: “request write X”

2. P àA, B: “prepare to write X”

3. A, B àP: “prepared” or “error”

4. P àC: “result write X” or “failed”

5. P àA, B: “commit write X”

28
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• Any server is essentially a state machine
– Operations transition between states

• Need an op to be executed on all replicas, or none at all
– i.e., we need distributed all-or-nothing atomicity
– If op is deterministic, replicas will end in same state

State machine replication
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Two phase commit protocol

Client C

Primary P

Backup A B

1. C à P: “request <op>”

2. P àA, B: “prepare <op>”

3. A, B àP: “prepared” or “error”

4. P àC: “result exec<op>” or “failed”

5. P àA, B: “commit <op>”
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What if primary fails? 
Backup fails?

“Okay” (i.e., op is stable) if 
written to > ½ backups

Two phase commit protocol

Client C

Primary P

Backup A B

1. C à P: “request <op>”

2. P à A, B: “prepare <op>”

3. A, B à P: “prepared” or “error”

4. P à C: “result exec<op>” or “failed”

5. P à A, B: “commit <op>”
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Two phase commit protocol

Client C

Primary P

Backup A B
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> ½ 
nodes

> ½ 
nodes

• Commit sets always overlap 
≥ 1 node  

• Any >½ nodes guaranteed 
to see committed op
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Wednesday class

Papers:  Strong consistency

Lecture:  Consensus, view change protocols

33


