



### Is this sufficient?

- Server latency due to load?
  - If can measure: Time\_local\_new = Time\_server + (RTT / 2 + lag)
- But what about asymmetric latency?
  - RTT / 2 not sufficient!
- What do we need to measure RTT?
  - Requires no clock drift!
- What about "almost" concurrent events?
  - Clocks have micro/milli-second precision











# Strong consistency Provide behavior of a single copy of object: Read should return the most recent write Subsequent reads should return same value, until next write Telephone intuition: Alice updates Facebook post Alice calls Bob on phone: "Check my Facebook post!" Bob read's Alice's wall, sees her post









## Strong consistency = linearizability

- Linearizability (Herlihy and Wang 1991)
  - 1. All servers execute all ops in some identical sequential order
  - 2. Global ordering preserves each client's own local ordering
  - 3. Global ordering preserves real-time guarantee
    - All ops receive global time-stamp using a sync'd clock
    - If ts<sub>op1</sub>(x) < ts<sub>op2</sub>(y), OP1(x) precedes OP2(y) in sequence
- Once write completes, all later reads (by wall-clock start time) should return value of that write or value of later write.
- Once read returns particular value, all later reads should return that value or value of later write.



17





# Valid Sequential Consistency?



- Why? Because P3 and P4 don't agree on order of ops. Doesn't matter when events took place on diff machine, as long as proc's AGREE on order.
- What if P1 did both W(x)a and W(x)b?
  - Neither valid, as (a) doesn't preserve local ordering

#### **Even Weaker: Causal consistency**

- Potentially causally related operations?
  - -R(x) then W(x)
  - R(x) then W(y),  $x \neq y$
- Necessary condition: Potentially causally-related writes must be seen by all processes in the same order
  - Concurrent writes may be seen in a different order on different machines

#### **Causal consistency**

| P1: W(x)a |       |       | W(x)c |       |       |
|-----------|-------|-------|-------|-------|-------|
| P2:       | R(x)a | W(x)b |       |       |       |
| P3:       | R(x)a |       |       | R(x)c | R(x)b |
| P4:       | R(x)a |       |       | R(x)b | R(x)c |

- Allowed with causal consistency, but not with sequential
- W(x)b and W(x)c are concurrent
  - So all processes don't see them in the same order
- P3 and P4 read the values 'a' and 'b' in order as potentially causally related. No 'causality' for 'c'.

#### **Causal consistency**

| P1: W(x)a |       |       |  |       |       |
|-----------|-------|-------|--|-------|-------|
| P2:       | R(x)a | W(x)b |  |       |       |
| P3:       | R(x)a |       |  | R(x)c | R(x)b |
| P4:       | R(x)a |       |  | R(x)b | R(x)c |

- Why not sequentially consistent?
  - P3 and P4 see W(x)b and W(x)c in different order.
- · But fine for causal consistency
  - Writes W(*x*)*b* and W(*x*)*c* are **not causally dependent** 
    - Write after write has no dependencies

## Causal consistency

| P2:       | R(x)a | VV(x)b |       |       | . 🛛 🖌 |
|-----------|-------|--------|-------|-------|-------|
| P3:       |       |        | R(x)b | R(x)a |       |
| P4:       |       |        | R(x)a | R(x)b |       |
|           |       | (a)    |       |       |       |
| P1: W(x)a |       |        |       |       |       |
| P2:       |       | W(x)b  |       |       |       |
| P3:       |       |        | R(x)b | R(x)a |       |
| P4:       |       |        | R(x)a | R(x)b |       |
|           |       | (b)    |       |       |       |

B: Correct, P2 doesn't read value of a before W

# **Causal consistency**

- Requires keeping track of which processes have seen which writes
  - Needs a dependency graph of which op is dependent on which other ops
  - ... or use vector timestamps!

See COS 418: https://www.cs.princeton.edu/courses/archive/fall17/cos418/docs/L4-time.pptx















# Wednesday class

Papers: Strong consistency Lecture: Consensus, view change protocols

33