
Ethereum and smart contracts

Arvind Narayanan



Goals

• Understand smart contract platforms

(without getting bogged down in Ethereum details)

• Appreciate why smart contracts are powerful

• Learn their current limitations and open problems



signed by Alice

Pay value <v> from 

addr <A> to addr <B>

Bitcoin

Users broadcast transactions to the network

Miners assemble them into blocks,

achieve consensus



Extension 1

Users broadcast arbitrary messages to the network

Miners assemble them into blocks,

achieve consensus



Extension 2: state machine replication

Users broadcast programs to the network

Miners: consensus +

program execution

Global state



Extension 3: smart contract platform

Access control for writes to global state

– Not for reads: everything is public

Designate some variables as tokens/money

– Native instructions to send/receive money

– Virtual machine enforces usual rules of money

Programs are long-lived, pass messages to other programs

Consequence: programs are agents!



A smart contract is an algorithmic agent

Agent’s actions algorithmically 

specified, fixed

Decentralized — no one 

controls it

No private memory, 

communication channels

Name Value

alice.bit xxx

… …



Ethereum code for above smart contract

(This version uses sender’s address as the value)



Puzzle: how to look up a domain name?

Can’t download entire 

blockchain – too inefficient

Can’t simply ask a miner – no 

one is trusted

Hint: in Bitcoin, how to confirm 

that you’ve received a payment 

w/o downloading blockchain?

Name Value

alice.bit xxx

… …



Solution: store a succinct snapshot of 

smart contract execution in the blockchain

Blockchain contains hash 

tree of all current key-

value pairs in the system

User stores root hash

User queries key

Miner returns value, hash 

chain to root



Vision: markets/commerce without gatekeepers



Honest Ponzi scheme



Limitations of today’s smart contract platforms

1. Verifier’s dilemma (see reading)

2. Data feeds

3. Scaling & sharding (see reading)

4. Endpoint security

5. Contract security (next slide)



Ethereum: poor design choices w.r.t. security

1. No handling of race conditions

2. No random number generator

3. Poor exception handling

4. Reentrancy is unsafe

Paper: Making smart contracts smarter



A note of caution

Many smart contract applications are attempts to solve 

social problems using technology

Example: 

a land registry smart contract won’t help against a corrupt gov’t: 

they have all the guns and can come take your land anyway

Example: 

healthcare smart contracts “solve” the “problem” of patients 

not trusting their doctors (!!)


