
4/22/18

1

Erasure Codes for Systems
COS 518: Advanced Computer Systems

Lecture 19

Wyatt Lloyd

Things Fail, Let’s Not Lose Data
• How?

Things Fail, Let’s Not Lose Data
• How?

• Replication
• Store multiple copies of the data
• Simple and very commonly used!
• But, requires a lot of extra storage

• Erasure coding
• Store extra information we can use to recover the data
• Fault tolerance with less storage overhead
• Today’s topic!

Erasure Codes vs Error Correcting Codes
• Error correcting code (ECC):
• Protects against errors is data, i.e., silent corruptions
• Bit flips can happen in memory -> use ECC memory
• Bits can flip in network transmissions -> use ECCs

• Erasure code:
• Data is erased, i.e., we know it’s not there
• Cheaper/easier than ECC

• Special case of ECC
• What we’ll discuss today and use in practice

• Protect against errors with checksums

4/22/18

2

Erasure Codes, a simple example w/ XOR

A A⊕
BB A A⊕

BB

Erasure Codes, a simple example w/ XOR

A A⊕
BB

A⊕
BB ⊕A =

Erasure Codes, a simple example w/ XOR Reed-Solomon Codes (1960)
• N data blocks
• K coding blocks
• M = N+K total blocks

• Recover any block from any N other blocks!

• Tolerates up to K simultaneous failures

• Works for any N and K (within reason)

4/22/18

3

Reed-Solomon Code Notation
• N data blocks
• K coding blocks
• M = N+K total blocks

• RS(N,K)
• (10,4): 10 data blocks, 4 coding blocks

• f4 uses this, FB HDFS for data warehouse does too

• Will also see (M, N) notation sometimes
• (14,10): 14 total blocks, 10 data blocks, (4 coding blocks)

Reed-Solomon Codes, How They Work
• Galois field arithmetic is the secret sauce

• Details aren’t important for us J

• See “J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software—Practice &
Experience 27(9):995–1012, September 1997.”

Reed-Solomon (4,2) Example

1BA DC 2

Reed-Solomon (4,2) Example

1BA DC 2

4/22/18

4

Reed-Solomon (4,2) Example

1BA DC 2

1BA DC= + + +

Reed-Solomon (4,2) Example

1BA DC 2

1BA DC

2

=

1DCA =

=
=
=

+ + +

+ + +

Erasure Codes Save Storage
• Tolerating 2 failures
• 3x replication = ___ storage overhead

Erasure Codes Save Storage
• Tolerating 2 failures
• 3x replication = 3x storage overhead
• RS(4,2) = ___ storage overhead

4/22/18

5

Erasure Codes Save Storage
• Tolerating 2 failures
• 3x replication = 3x storage overhead
• RS(4,2) = (4+2)/4 = 1.5x storage overhead

Erasure Codes Save Storage
• Tolerating 2 failures
• 3x replication = 3x storage overhead
• RS(4,2) = (4+2)/4 = 1.5x storage overhead

• Tolerating 4 failures
• 5x replication = 5x storage overhead
• RS(10,4) = ___ storage overhead

Erasure Codes Save Storage
• Tolerating 2 failures
• 3x replication = 3x storage overhead
• RS(4,2) = (4+2)/4 = 1.5x storage overhead

• Tolerating 4 failures
• 5x replication = 5x storage overhead
• RS(10,4) = (10+4)/10 = 1.4x storage overhead
• RS(100,4) = ___ storage overhead

Erasure Codes Save Storage
• Tolerating 2 failures
• 3x replication = 3x storage overhead
• RS(4,2) = (4+2)/4 = 1.5x storage overhead

• Tolerating 4 failures
• 5x replication = 5x storage overhead
• RS(10,4) = (10+4)/10 = 1.4x storage overhead
• RS(100,4) = (100+4)/100 = 1.04x storage overhead

4/22/18

6

What’s the Catch? Catch 1: Encoding Overhead
• Replication:
• Just copy the data

• Erasure coding:
• Compute codes over N data blocks for each of the K coding blocks

Catch 2: Decoding Overhead
• Replication
• Just read the data

• Erasure Coding

Catch 2: Decoding Overhead
• Replication
• Just read the data

• Erasure Coding
• Normal case is no failures -> just read the data!
• If there are failures

• Read N blocks from disks and over the network
• Compute code over N blocks to reconstruct the failed block

4/22/18

7

Catch 3: Updating Overhead
• Replication:
• Update the data in each copy

• Erasure coding
• Update the data in the data block
• And all of the coding blocks

Catch 3’: Deleting Overhead
• Replication:
• Delete the data in each copy

• Erasure coding
• Delete the data in the data block
• Update all of the coding blocks

Catch 4: Update Consistency
• Replication:

• Erasure coding

Catch 4: Update Consistency
• Replication:
• Consensus protocol (Paxos!)

• Erasure coding
• Need to consistently update all coding blocks with a data block
• Need to consistently apply updates in a total order across all blocks
• Need to ensure reads, including decoding, are consistent

4/22/18

8

Catch 5: Fewer Copies for Reading
• Replication
• Read from any of the copies

• Erasure coding
• Read from the data block
• Or reconstruct the data on fly if there is a failure

Catch 6: Larger Min System Size
• Replication
• Need K+1 disjoint places to store data
• e.g., 3 disks for 3x replication

• Erasure coding
• Need M=N+K disjoint places to store data
• e.g., 14 disks for RS(10,4) replication

What’s the Catch?
• Encoding overhead
• Decoding overhead
• Updating overhead
• Deleting overhead

• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Many Different Codes
• See “Erasure Codes for Storage Systems, A Brief Primer.

James S. Plank. Usenix ;login: Dec 2013” for a good jumping
off point
• Also a good, accessible resource generally

4/22/18

9

Different codes make different tradeoffs
• Encoding, decoding, and updating overheads
• Storage overheads
• Best are “Maximum Distance Separable” or “MDS” codes where K

extra blocks allows you to tolerate any K failures
• Configuration options
• Some allow any (N,K), some restrict choices of N and K

Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead
• Updating overhead

• Deleting overhead
• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Let’s Use Our New Hammer! Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead
• Updating overhead

• Deleting overhead
• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Immutable data

4/22/18

10

Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead
• Updating overhead

• Deleting overhead
• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Immutable data

Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead
• Updating overhead

• Deleting overhead
• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Immutable data

Storing lots of data
(when storage overhead
actually matters this is true)

Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead
• Updating overhead

• Deleting overhead
• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Immutable data

Storing lots of data
(when storage overhead
actually matters this is true)

Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead
• Updating overhead

• Deleting overhead
• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Immutable data

Storing lots of data
(when storage overhead
actually matters this is true)

Data is stored for a long
time after being written

4/22/18

11

Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead
• Updating overhead

• Deleting overhead

• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Immutable data

Storing lots of data
(when storage overhead
actually matters this is true)

Data is stored for a long
time after being written

Low read rate

Erasure Coding Big Picture
• Huge Positive
• Fault tolerance with less storage overhead!

• Many drawbacks
• Encoding overhead
• Decoding overhead

• Updating overhead
• Deleting overhead

• Update consistency
• Fewer copies for serving reads
• Larger minimum system size

Immutable data

Storing lots of data
(when storage overhead
actually matters this is true)

Data is stored for a long
time after being written

Low read rate

f4:
Facebook’s Warm BLOB Storage System
[OSDI ‘14]

1

Subramanian Muralidhar*, Wyatt Lloyd*ᵠ, Sabyasachi Roy*, Cory Hill*, Ernest Lin*, Weiwen
Liu*, Satadru Pan*, Shiva Shankar*, Viswanath Sivakumar*, Linpeng Tang*⁺, Sanjeev Kumar*

*Facebook Inc., ᵠUniversity of Southern California, ⁺Princeton University

Profile Photo

BLOBs@FB

2

Feed Photo

Feed Video

Cover Photo

Immutable
&

Unstructured

Diverse

A LOT of them!!

4/22/18

12

No
rm

al
ize

d
 R

ea
d

Ra
te

s

Phot
o

< 1 Days 1 Day 1 Week 1 Month 1 Year
1X14X30X

98X

510X

590X

68X

16X 6X 1X

Data cools off rapidly

3 Months
7X 2X

3

HOT DATA WARM DATA

Handling failures

HOST

RACKS
DATACENTER

HOST

RACKS
DATACENTER

HOST

RACKS
DATACENTER

1.2

* 3 = 3.6Replication:
4

9 Disk failures3 Host failures3 Rack failures3 DC failures

Handling load

6

HOSTHOSTHOSTHOSTHOST HOST HOST

5

Reduce space usage
AND

Not compromise reliability

Background: Data serving
• CDN protects storage

• Router abstracts storage

• Web tier adds business
logic

User Requests

Web Servers CDN

BLOB
Storage

Router

Writes Reads

6

4/22/18

13

Background: Haystack [OSDI2010]
Header

Footer

BLOB1

BID1: Off

Volume

In-Memory Index

• Volume is a series of BLOBs

• In-memory index

7

Header

Footer

BLOB1

Header

Footer

BLOB1

BID2: Off

BIDN: Off

Introducing f4: Haystack on cells
RackRackRack

Cell

Data+Index

Compute

8

Data splitting

Stripe1 Stripe2

RS =>BLOB2

RS =>
9

10G Volume
Reed Solomon Encoding

BLOB1

BLOB2

BLOB3

BLOB4
BLOB5
BLOB5

BLOB6

BLOB7

BLOB8

BLOB9

BLOB10

BLOB11

BLOB4

BLOB2

BLOB4

4G parity

Data placement

Cell with 7 Racks

• Reed Solomon (10, 4) is used in practice (1.4X)
• Tolerates 4 racks (à 4 disk/host) failures

10

Stripe1 Stripe2

10G Volume

4G parity

RS RS

4/22/18

14

Reads

Compute

Storage Nodes

Cell

Router
Index

User
Request

Index
Read

Data
Read

• 2-phase: Index read returns the exact physical location of the
BLOB

11

Reads under cell-local failures
Router

Index
Read

Decode
Read

• Cell-Local failures (disks/hosts/racks) handled locally

Compute (Decoders)

Storage NodesIndex
User

Request

Cell

12

Data
Read

Reads under datacenter failures (2.8X)

2 * 1.4X = 2.8X

Compute (Decoders)
Cell in Datacenter1

User
Request

Compute (Decoders)
Mirror Cell in Datacenter2

Proxying

13

Router
Cross datacenter XOR

Cell in
Datacenter1

Cell in
Datacenter2

Cell in
Datacenter3

33%

67%

(1.5 * 1.4 = 2.1X)

14

Index

Index

Index

Cross –DC
index copy

4/22/18

15

Reads with datacenter failures (2.1X)
IndexRouter

User
Request

Index
Read

Router

Router

Data
Read

Data
Read

XOR

15

Index

IndexIndex

Haystack v/s f4 2.8 v/s f4 2.1
Haystack with 3

copies
f4 2.8 f4 2.1

Replication 3.6X 2.8X 2.1X
Irrecoverable Disk Failures 9 10 10

Irrecoverable Host Failures 3 10 10

Irrecoverable Rack failures 3 10 10

Irrecoverable Datacenter
failures

3 2 2

Load split 3X 2X 1X

16

Evaluation

• What and how much data is “warm”?

• Can f4 satisfy throughput and latency requirements?

• How much space does f4 save

• f4 failure resilience

17

Methodology

• CDN data: 1 day, 0.5% sampling

• BLOB store data: 2 week, 0.1%

• Random distribution of BLOBs assumed

• The worst case rates reported

18

4/22/18

16

Hot and warm divide

0

50

100

150

200

250

300

350

400

1 week 1 month 3 month 1 year

Re
ad

s/
Se

c
pe

r d
isk

Age

Ph…

19

HOT DATA WARM DATA

< 3 months à Haystack > 3 months à f4

80 Reads/Sec

��

����

����

����

����

��

	
� �

� ����� �

�

�
�
�

�������
������

� � � � � � � � � �

It is warm, not cold

20

HOT DATA WARM DATA

Haystack (50%) F4 (50%)

f4 Performance: Most loaded disk in
cluster

21

��
��
���
���
���
���
���
���
���

� � � � � � � 	

��
��

��
�������

Peak load on disk: 35 Reads/Sec

Re
ad
s/
Se
c

��

����

����

����

����

��

�� ��� ��� ��� ��� ����

�
�
��
��
��
�	

�
�
��
��

�
��

	
��
�������

f4 Performance: Latency

22

P80 = 30ms P99 = 80ms

��

����

����

����

����

��

�� ��� ��� ��� ��� ����

�
�
��
��
��
�	

�
�
��
��

�
��

	
��
�������

�
���
��
��

4/22/18

17

Concluding Remarks

• Facebook’s BLOB storage is big and growing

• BLOBs cool down with age
• ~100X drop in read requests in 60 days

• Haystack’s 3.6X replication over provisioning for old, warm data.

• f4 encodes data to lower replication to 2.1X

23

The Akamai Netwowrk: A
Platform for High-

Performance internet
Applications

COS 518: Advanced Computer Systems

Fei Gao

4/17/2018

• Peering point congestion (middle mile)
• Inefficient routing/communication protocols
• Unreliable networks
• Scalability
• Application limitations and slow rate of change adoption

68

Problem: Internet Delivery Challenges

4/22/18

18

69

Delivery Network Overview

set up
configurations

collect server log

• Content and Streaming Media Delivery
• Application Delivery

70

Transport System

Edge server Entrypoint

Reflector

Reflector

Reflector

Edge server Entrypoint
Edge server

A

Parent
server B

Server C

• Deploy servers as close to users as possible

• Thousands of edge-based servers

• Tiered Distribution

• Overlay network for Live Streaming

Content Delivery
• Speed up long-haul Internet communications by using
the Akamai platform as a high-performance overlay
network.
• Path optimization / Multiple paths
• Packet loss reduction
• Transport protocol optimizations

• Pools of persistent connections

• Intelligent TCP window size and retransmission based on the
network latency information

• Application optimization

Application Delivery

• Push application logic from the origin server out to the edge of
the Internet.

– EdgeComputing

– Applications that does not rely on huge transactional databases

• Push application logic from the origin server out to the edge of
the Internet.

4/22/18

19

• Origin server location
• Cache control/indexing
• Access control
• Response to origin failure
• EdgeComputing

73

Edge Server Platform
• Scoring
• Based on tremendous amounts of historic and real-time data

• Real-time mapping
• Direct the end user to the best edge server
• Map to cluster: based on score
• Map to server: based on the cached content

74

Mapping System

• New York Post: 20X performance improvement

• U.S. government: Protection against DDos

• MySpace: 6X speedup, 98% offload

• Haiti Benefit Concert: broadcast it online, 5.8M
streams served in a weekend, $61 million raised.

Result:
• Google scholar citation: 605

• Market share: 45% in 2017

• 15%-30% of global network traffic comes from Akamai

Impact

4/22/18

20

• Thank you!

77

Experiences with
CoralCDN: A Five-Year

Operational View

COS 518: Advanced Computer Systems

Felix Madutsa

April 18 2018

80

CoralCDN

• A free, open, P2P and self-organizing web CDN designed
by Michael J. Freedman

• No prior registration, authorization, or special configuration
needed

• Publishing by appending a suffix to a URL’s hostname,
e.g., http:/ /example.com.nyud.net/

• Designed to automatically and scalably handle sudden
spikes in traffic (flash crowds) for new content in services

that suffer from overloads

• Deployed on the PlanetLab research network (260
servers) between 2004 - 2015

4/22/18

21

81

CoralCDN Usage

82

Problem Statement/Motivation

• Present data collected over the system’s
production deployment and its implications

• Discuss deployment challenges encountered
and describe preferred solutions

• Insights for building a secure, open, and
scalable content distribution network

83

Web Security Implications of Open API

• CoralCDN as an elastic resource
• Simple and friendly API allowed wide +

dynamic adoption and misuse

• Open API + naming techniques caused security
problems from lack of explicitness in
specifying protection domains

84

Security Mechanisms
1. Limiting functionality
• Brute-force attacks on websites are slow

• Cannot perform anonymous attacks

2. Reducing excessive resource use
• Fair sharing mechanisms to balance bandwidth

consumption

• Monitoring of both client-side and server side

usage

3. Blacklisting domains and offloading security
• Global blacklist for phishing attempts,

copyright violations, access control violations

4/22/18

22

85

Lessons for CDNs

• CoralCDN designed to interact with

overloaded or poor-behaving servers

• Unlike commercial CDNs, Coral cannot grow

the size of the network best on expected use

86

Lessons for CDNs

1. Designing for faulty origins

• Cache negative service results

• Serve stale content if origin faulty (<= 24hrs)

• Prevent truncations through whole-file

overwrites

• Decoupling service dependences

2. Manage oversubscribed bandwidth
• Respond with ”Forbidden” when domain

oversubscribed

3. Managing performance jitters
• Need to guarantee stability

87

Lessons for Platforms

• Application developments could benefit from

greater visibility and control of lower layers

1. Exposing information and expressing

preferences across layers
• Export greater information to higher levels

• Applications push policies to lower levels

88

Lessons for Platforms

• Application developments could benefit from

greater visibility and control of lower layers

1. Exposing information and expressing

preferences across layers
• Export greater information to higher levels

• Applications push policies to lower levels

2. Support for fault-tolerance
• Dynamically update root nameserver to reflect

change

• Announcing IP anycast address via BGP

4/22/18

23

89

Insights for Building Open CDNs

• Coral was overdesigned for its workload

1. Naming
• Levels to support layers of indirection

2. Content Integrity
• End-to-end signature for content integrity

through HTTP

3. Fine-Grain Origin Control
• Change origin policy

90

Impact?

