Erasure Codes for Systems

COS 518: Advanced Computer Systems
Lecture 19

Wyatt Lloyd

Things Fail, Let’s Not Lose Data

* How?

Things Fail, Let’s Not Lose Data
* How?

* Replication
« Store multiple copies of the data
+ Simple and very commonly used!
 But, requires a lot of extra storage

* Erasure coding
« Store extra information we can use to recover the data
 Fault tolerance with less storage overhead
» Today’s topic!

Erasure Codes vs Error Correcting Codes

* Error correcting code (ECC):
* Protects against errors is data, i.e., silent corruptions
« Bit flips can happen in memory -> use ECC memory
* Bits can flip in network transmissions -> use ECCs

* Erasure code:
» Data is erased, i.e., we know it’s not there
* Cheaper/easier than ECC
« Special case of ECC
* What we’ll discuss today and use in practice
« Protect against errors with checksums

4/22/18

Erasure Codes, a simple example w/ XOR

Erasure Codes, a simple example w/ XOR

A D
D

Erasure Codes, a simple example w/ XOR
- I o

Reed-Solomon Codes (1960)
* N data blocks

* K coding blocks

* M = N+K total blocks

* Recover any block from any N other blocks!

* Tolerates up to K simultaneous failures

» Works for any N and K (within reason)

4/22/18

Reed-Solomon Code Notation

* N data blocks
» K coding blocks
* M = N+K total blocks

« RS(N,K)
* (10,4): 10 data blocks, 4 coding blocks
« f4 uses this, FB HDFS for data warehouse does too

» Will also see (M, N) notation sometimes
* (14,10): 14 total blocks, 10 data blocks, (4 coding blocks)

Reed-Solomon Codes, How They Work
* Galois field arithmetic is the secret sauce
* Details aren’t important for us ©

» See “J. S. Plank. A tutorial on Reed-Solomon coding for
fault-tolerance in RAID-like systems. Software—Practice &
Experience 27(9):995-1012, September 1997.”

Reed-Solomon (4,2) Example

N B I 3 K E

Reed-Solomon (4,2) Example

I I O 3 K E

4/22/18

Reed-Solomon (4,2) Example

®| [E EN KN

Reed-Solomon (4,2) Example

H O DD E
I-0O B KN
N I O

Erasure Codes Save Storage

* Tolerating 2 failures
» 3x replication = ___ storage overhead

Erasure Codes Save Storage

« Tolerating 2 failures
 3x replication = 3x storage overhead
* RS(4,2) = ___ storage overhead

4/22/18

Erasure Codes Save Storage

* Tolerating 2 failures
» 3x replication = 3x storage overhead
* RS(4,2) = (4+2)/4 = 1.5x storage overhead

Erasure Codes Save Storage

* Tolerating 2 failures
+ 3x replication = 3x storage overhead
* RS(4,2) = (4+2)/4 = 1.5x storage overhead

* Tolerating 4 failures
+ 5x replication = 5x storage overhead
* RS(10,4) = ___ storage overhead

Erasure Codes Save Storage

* Tolerating 2 failures
» 3x replication = 3x storage overhead
* RS(4,2) = (4+2)/4 = 1.5x storage overhead

* Tolerating 4 failures
« 5x replication = 5x storage overhead
* RS(10,4) = (10+4)/10 = 1.4x storage overhead
* RS(100,4) = ___ storage overhead

Erasure Codes Save Storage

* Tolerating 2 failures
+ 3x replication = 3x storage overhead
* RS(4,2) = (4+2)/4 = 1.5x storage overhead

* Tolerating 4 failures
+ 5x replication = 5x storage overhead
* RS(10,4) = (10+4)/10 = 1.4x storage overhead
* RS(100,4) = (100+4)/100 = 1.04x storage overhead

4/22/18

What’s the Catch?

Catch 1: Encoding Overhead

* Replication:
+ Just copy the data

* Erasure coding:
» Compute codes over N data blocks for each of the K coding blocks

Catch 2: Decoding Overhead

* Replication
* Just read the data

* Erasure Coding

Catch 2: Decoding Overhead

* Replication
* Just read the data

* Erasure Coding
* Normal case is no failures -> just read the data!
* If there are failures
« Read N blocks from disks and over the network
« Compute code over N blocks to reconstruct the failed block

4/22/18

Catch 3: Updating Overhead

* Replication:
» Update the data in each copy

* Erasure coding
» Update the data in the data block
* And all of the coding blocks

Catch 3’: Deleting Overhead

* Replication:
* Delete the data in each copy

* Erasure coding
* Delete the data in the data block
» Update all of the coding blocks

Catch 4: Update Consistency

* Replication:

* Erasure coding

Catch 4: Update Consistency

* Replication:
+ Consensus protocol (Paxos!)

* Erasure coding
* Need to consistently update all coding blocks with a data block
* Need to consistently apply updates in a total order across all blocks
* Need to ensure reads, including decoding, are consistent

4/22/18

Catch 5: Fewer Copies for Reading

* Replication
* Read from any of the copies

* Erasure coding
* Read from the data block
» Or reconstruct the data on fly if there is a failure

Catch 6: Larger Min System Size

* Replication
* Need K+1 disjoint places to store data
* e.g., 3 disks for 3x replication

* Erasure coding
* Need M=N+K disjoint places to store data
* e.g., 14 disks for RS(10,4) replication

What’s the Catch?

* Encoding overhead
» Decoding overhead

» Updating overhead
* Deleting overhead

» Update consistency
» Fewer copies for serving reads
 Larger minimum system size

Many Different Codes

* See “Erasure Codes for Storage Systems, A Brief Primer.
James S. Plank. Usenix ;login: Dec 2013” for a good jumping
off point

* Also a good, accessible resource generally

4/22/18

Different codes make different tradeoffs

* Encoding, decoding, and updating overheads

« Storage overheads
* Best are “Maximum Distance Separable” or “MDS” codes where K
extra blocks allows you to tolerate any K failures

 Configuration options
» Some allow any (N,K), some restrict choices of N and K

Erasure Coding Big Picture

* Huge Positive
* Fault tolerance with less storage overhead!

* Many drawbacks
* Encoding overhead
» Decoding overhead
» Updating overhead
« Deleting overhead
» Update consistency
» Fewer copies for serving reads
* Larger minimum system size

Let’s Use Our New Hammer!

Erasure Coding Big Picture

* Huge Positive
* Fault tolerance with less storage overhead!

* Many drawbacks
* Encoding overhead
» Decoding overhead
» Updating overhead
« Deleting overhead
* Update consistency
» Fewer copies for serving reads
» Larger minimum system size

Immutable data

4/22/18

Erasure Coding Big Picture

* Huge Positive
* Fault tolerance with less storage overhead!

* Many drawbacks
* Encoding overhead
» Decoding overhead

~Updating-overhead

« Deleting overhead

~Update-consisteney
» Fewer copies for serving reads
* Larger minimum system size

Immutable data

Erasure Coding Big Picture

* Huge Positive
* Fault tolerance with less storage overhead!

* Many drawbacks
* Encoding overhead
» Decoding overhead

~Updating-overhead

« Deleting overhead

+Update-consisteney
» Fewer copies for serving reads
* Larger minimum system size

Immutable data

Storing lots of data
(when storage overhead
actually matters this is true)

Erasure Coding Big Picture

* Huge Positive
* Fault tolerance with less storage overhead!

* Many drawbacks
» Encoding overhead

Erasure Coding Big Picture

* Huge Positive
* Fault tolerance with less storage overhead!

* Many drawbacks
* Encoding overhead

* Decoding overhead

~Updating-overhead

+ Deleting overhead

~Update-consisteney

» Fewer copies for serving reads

~Largerminimum-system-size

Immutable data

Storing lots of data
(when storage overhead
actually matters this is true)

» Decoding overhead

Data is stored for a long

~Updating-everhead time after being written
« Deleting overhead Immutable data
+Update-consisteney

» Fewer copies for serving reads

~tLargerminimum-system-size

Storing lots of data
(when storage overhead
actually matters this is true)

4/22/18

10

Erasure Coding Big Picture

* Huge Positive
* Fault tolerance with less storage overhead!

Low read rate
* Many drawbacks

+ Encoding overhead

» Decoding overhead Data is stored for a long

~Updating-overhead time after being written
l " Dle'e""g overhead Immutable data

» Fewer copies for serving reads Storing lots of data
L s .

(when storage overhead
actually matters this is true)

Erasure Coding Big Picture

* Huge Positive
« Fault tolerance with less storage overhead!

Low read rate
* Many drawbacks
« Encoding overhead

* Decoding overhead Data is stored for a long

time after being written

+ Deleting overhead

A_U.pd.a,te_eeﬁs’steﬁey Immutable data
~Fewer-copies-forservingreads .
. | : Storing lots of data

(when storage overhead
actually matters this is true)

f4:
Facebook’s Warm BLOB Storage System
[OSDI “14]

Subramanian Muralidhar*, Wyatt Lloyd*?, Sabyasachi Roy*, Cory Hill*, Ernest Lin*, Weiwen
Liu*, Satadru Pan*, Shiva Shankar*, Viswanath Sivakumar*, Linpeng Tang**, Sanjeev Kumar*

*Facebook Inc., *University of Southern California, *Princeton University

1

BLOBs@FB

Cover Photo

Profile Photo

Immutable
&
Unstructured Feed Photo
Diverse
A LOT of them!! Feed Video

4/22/18

11

590X

510X

HOT DATA

M Phot

Data cools off rapidly

98X
68X
S B e
— 00 e % IX X

<1Days 1Day 1 Week 1Month 3 Months 1 Year

Normalized Read Rates

3

Handling failures
~

A\ ¥ 4

|

Handling load

Reduce space usage
AND
Not compromise reliability

Background: Data serving

‘ User Requests

» CDN protects storage

» Router abstracts storage

Web Servers

» Web tier adds business
logic

4/22/18

12

4/22/18

Background: Haystack [OSDI201 0] Introducing f4: Haystack on cells
* Volume is a series of BLOBs BID1: Off
. BIDjOff

* In-memory index
BIDN: Off
In-Memory Index

BLOB1

Volume

Data+Index

N

Cell

Dn-l-n eanlittin~
@

Data placement

10G Volume

eed Solomon Encodin
% § 4G pari
Stripel Stripe2
N\ (¢ N
e o
RS BLOB2 BLOB11 =)
BLOB7
%

RS =>|

G BN N N .
. 7

Cell with 7 Racks

* Reed Solomon (10, 4) is used in practice (1.4X)
* Tolerates 4 racks (= 4 disk/host) failures

Y 2/
7

A\
©

10

13

Reads

Router
Storage Nodes
Index Index 8

== ESSEERRE
Data | ‘u
{

Re.

Compute]

Cell

. %—Lpggse: Index read returns the exact physical location of the

11

Reads under cell-local failures

Router

Index || Index Storage Nodes

u d |E!

ser ea

lRegues‘ ‘L’ ﬁ | 1
—

‘__'[Compute (Decoders)]

Read

Cell

* Cell-Local failures (disks/hosts/racks) handled locally

12

Reads under datacenter failures (2.8X)

SR EEEEE

Compute (Decoders)]

Cell in Datacenterl

= EE

[Compute (Decoders)]

Mirror Cell in Datacenter2

2*1.4X=2.8X

13

Cross datacenter XOf-5 * 1.4 = 2.1X)

67%) || Sy
— 1 171 Cellin
33% I/ § § R R | \ Datacenterl

Cellin
Datacenter2

] g

i N .
=" I I I | -%g

Index
I B B B § Cellin
_Crgss -DC { \ \ Datacenter3
index copy Q‘ Q‘

| = g "%

14

4/22/18

14

Reads with datacenter failures (2.1X)

er Llnﬂ.%_‘

Sy

Data
Reay
User
Request XOR \
Index

Router

15

Haystack v/s f4 2.8 v/s f4 2.1

Evaluation

* What and how much data is “warm”?

« Can f4 satisfy throughput and latency requirements?

* How much space does f4 save

« f4 failure resilience

17

Replication 3.6X 2.1X
Irrecoverable Disk Failures 9 10 10
Irrecoverable Host Failures 3 10 10
Irrecoverable Rack failures 3 10 10
Irrecoverable Datacenter 3 2 2
failures

Load split 3X 2X 1X

16
Methodology

» CDN data: 1 day, 0.5% sampling

* BLOB store data: 2 week, 0.1%

« Random distribution of BLOBs assumed

* The worst case rates reported

18

4/22/18

15

Hot and warm divide

400
350 HOT DATA
-~
%300 < 3 months - Haystack >3 months > f4
5250
[oR
8200 H Ph...
2
»150
?3 80 Reads/S
n:100 eads/s>ec
50 I I
o []

1 week 1 month Age 3 month 1vyear
19

It is warm, not cold
| —

f4 Performance: Most loaded disk in
cluste

40
35
30
25 H
20 +
15 |
10 =
5 -
0 -] | | | | | | |

0 | 2 3 4 5 6 7
Time (days) -

™=

Peak load on disk::35 Reads/Sec

Reads/Sec

0.8
L 06
fa) -
0
0.4 - Haystack (50%) F4 (50%)
02
HOT DATA
0 | ' ' | L al L ' L |
| 2 4 | 2 I 2 4 8 I
Day Week Month Year
BLOB Age (log) 20
f4 Performance: Latency Haystack —
f4 —
| -
g /
5 0.8 -
a
< 0.6 - P80 =30ms P99.=80ms
g
& 04
5
B 0.2
@)
0k 1 1 1 1
0 20 40 60 80 100

Latency (ms)

22

4/22/18

16

Concluding Remarks

» Facebook’s BLOB storage is big and growing

* BLOBs cool down with age
* ~100X drop in read requests in 60 days

» Haystack’s 3.6X replication over provisioning for old, warm data.

« f4 encodes data to lower replication to 2.1X

The Akamai Netwowrk: A
Platform for High-
Performance internet
Applications

COS 518: Advanced Computer Systems

Fei Gao

4/17/2018

Problem: Internet Delivery Challenges

* Peering point congestion (middle mile)

« Inefficient routing/communication protocols

* Unreliable networks

* Scalability

* Application limitations and slow rate of change adoption

4/22/18

17

Delivery Network Overview

Transport System

» Content and Streaming Media Delivery
* Application Delivery

4/22/18

. Virtual Network
Platform
.
‘i Transport .
System Origin
End
Edge
Users Servers @ %%
¢
o !
X 3 Customers
@ Com;ﬁunicatiorgs L+
and Control System
T A set up
v vy v " .
Mapping i Data Collection ‘Managemem conflguratlons
and Analysis Portal
pata Collect server log
Control
69
Content Delivery
* Depl
R N
vsers \‘ (CE) Virtual Network Platform ﬁlil%

* Thot

Real-Time Mapping Data Collection | | Management 1~ gy
P .

Mapping Scoring and Analysis ortal

Application Delivery
* Speed up long-haul Internet communications by using
the Akamai platform as a high-performance overlay
- metwaBklication logic from the origin server out to the edge of
theftatérnet.

/
. \
(
(

-
Parent |

i
server B i

i Iﬁ{ﬂf | / Jatabases
- P IETEN /
i (4 4 H
e]
i fsenverA | | Sererc| 1sed on the
ne

» Application optimization

18

Edge Server Platform

* Origin server location

» Cache control/indexing

* Access control

* Response to origin failure
» EdgeComputing

Mapping System

» Scoring

» Based on tremendous amounts of historic and real-time data
* Real-time mapping

* Direct the end user to the best edge server

* Map to cluster: based on score

* Map to server: based on the cached content

Result:
* New York Post: 20X performance improvement
+ U.S. government: Protection against DDos
* MySpace: 6X speedup, 98% offload

« Haiti Benefit Concert: broadcast it online, 5.8M
streams served in a weekend, $61 million raised.

Impact
» Google scholar citation: 605
* Market share: 45% in 2017

* 15%-30% of global network traffic comes from Akamai

4/22/18

19

* Thank you!

Experiences with
CoralCDN: A Five-Year
Operational View

COS 518: Advanced Computer Systems

Felix Madutsa
April 18 2018

“You make it fun; we'l make it run*

CoralCDN CCORH]L

A free, open, P2P and self-organizing web CDN designed
by

No prior registration, authorization, or special configuration
needed

Publishing by appending a suffix to a URL’s hostname,
e.g., http:/ /lexample.com.nyud.net/

Designed to automatically and scalably handle sudden
spikes in traffic (flash crowds) for new content in services
that suffer from overloads

Deployed on the PlanetLab research network (260
servers) between 2004 - 2015

80

nnnnnnnnnnnnnnnnnnnnnnn Network

4/22/18

20

CoralCDN Usage %ORﬂﬂlﬁ

Problem Statement/Motivation

T TR &,
e B o
L w 3 °

06 Jan07 Jan08 Jan'09 Jan'10]
uests per day during CoralCDN's deploy-

Requests per Day (Milions)

Unique | Unique | % URLS | Regs to most
Year | domains | URLs | with 1 req | popular URL

2005 7881 577K 54% 697K ‘
2007 21555 | 588K 59% 410K
2009 20680 | 1787K 77% 1578K

Figure 5: CoralCDN traffic statistics for an arbitrary day (Aug 9).

81

* Present data collected over the system’s
production deployment and its implications

» Discuss deployment challenges encountered
and describe preferred solutions

* Insights for building a secure, open, and
scalable content distribution network

82

Web Security Implications of Open API

Security Mechanisms

» CoralCDN as an elastic resource
+ Simple and friendly API allowed wide +
dynamic adoption and misuse

* Open API + naming techniques caused security
problems from lack of explicitness in
specifying protection domains

83

1. Limiting functionality
» Brute-force attacks on websites are slow
« Cannot perform anonymous attacks

2. Reducing excessive resource use
» Fair sharing mechanisms to balance bandwidth
consumption
* Monitoring of both client-side and server side
usage

3. Blacklistin% domains and offloading security
* Global blacklist for phishing attempts,
copyright violations, access control violations

84

4/22/18

21

Lessons for CDNs

» CoralCDN designed to interact with
overloaded or poor-behaving servers

» Unlike commercial CDNs, Coral cannot grow
the size of the network best on expected use

85

Lessons for CDNs

1. Designing for faulty origins
» Cache negative service results
» Serve stale content if origin faulty (<= 24hrs)
» Prevent truncations through whole-file
overwrites
» Decoupling service dependences

2. Manage oversubscribed bandwidth
* Respond with ”Forbidden” when domain
oversubscribed

3. Managing performance jitters
* Need to guarantee stability

86

Lessons for Platforms

» Application developments could benefit from
greater visibility and control of lower layers

1. Exposing information and expressing

preferences across layers
+ Export greater information to higher levels
» Applications push policies to lower levels

@ 4000 T T T
Soof—— T T " |
3000 |- 3
2500 1
B R s |
1500 1 PlanetLab: All Dests —— |
1000 [- PlanetLab: Non-PL Dests 1
500 CoralCDN: HTTP «-a-:
o . . T !
916 917 918 919 920 921
Day

Data Sent per Day

87

Lessons for Platforms

» Application developments could benefit from
greater visibility and control of lower layers

1. Exposing information and expressing

preferences across layers
+ Export greater information to higher levels
» Applications push policies to lower levels

2. Support for fault-tolerance
» Dynamically update root nameserver to reflect
change
» Announcing IP anycast address via BGP

88

4/22/18

22

Insights for Building Open CDNs

» Coral was overdesigned for its workload

1. Naming
» Levels to support layers of indirection

2. Content Integrity
* End-to-end signature for content integrity
through HTTP

3. Fine-Grain Origin Control
» Change origin policy

89

Impact?

poF] Experiences with CoralCDN: A Five-Year Operational View.

MJ Freedman - NSDI, 2010 - static.usenix.org

Abstract CoralCDN is a self izing web content distribution network (CDN). Publishing
through CoralCDN is as simple as making a small change to a URL's hostname; a

decentralized DNS layer transparently directs browsers to nearby participating cache nodes,

which in tum cooperate to minimize load on the origin webserver. CoralCDN has been
publicly available on PlanetLab since March 2004, accounting for the majority of its
bandwidth and serving requests for several million users (client IPs) per day. This paper ...
Yr 99 Cited by 101 Related articles All 28 versions 99

920

4/22/18

23

