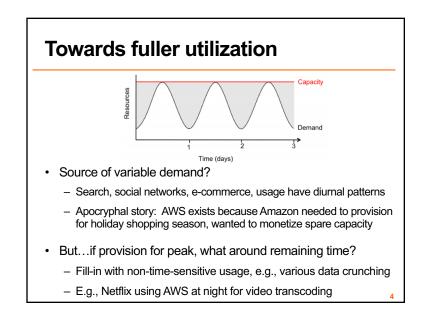


Key aspects of cloud computing

- 1. Illusion of infinite computing resources available on demand, eliminating need for up-front provisioning
- 2. The elimination of an up-front commitment
- 3. The ability to pay for use of computing resources on a short-term basis

From "Above the Clouds: A Berkeley View of Cloud Computing"

Two main sources of resource demand "Services" - External demand, scale supply to match demand "Data analysis" - Tradeoff scale & completion time · E.g., use 1 server for 10 hours vs. 10 servers for 1 hour - Source of demand elasticity! amazon 2017 Price Type of contract 2016 Price (m4.xlarge) (m4.xlarge) Spot - 1 hr duration \$0.139 / hour \$0.10 / hour Spot-6 hr duration \$0.176 / hour \$0.13 / hour On-demand \$0.215 / hour \$0.20 / hour



Today's lecture

- Metrics / goals for scheduling resources
- · System architecture for big-data scheduling

Scheduling: An old problem

CPU allocation

 Multiple processors want to execute, OS selects one to run for some amount of time

Bandwidth allocation

 Packets from multiple incoming queue want to be transmitted out some link, switch chooses one

What do we want from a scheduler?

- Isolation
 - Have some sort of guarantee that misbehaved processes cannot affect me "too much"
- · Efficient resource usage
 - Resource is not idle while there is process whose demand is not fully satisfied
 - "Work conservation" -- not achieved by hard allocations
- Flexibility
 - Can express some sort of priorities, e.g., strict or time based

Single Resource: Fair Sharing *n* users want to share a resource (e.g. CPU) – Solution: give each 1/n of the shared resource Generalized by *max-min fairness* – Handles if a user wants less than its fair share – E.g. user 1 wants no more than 20%

- Generalized by weighted max-min fairness 100%
 - Give weights to users according to importance
 - User 1 gets weight 1, user 2 weight 2

33%

66%

50%

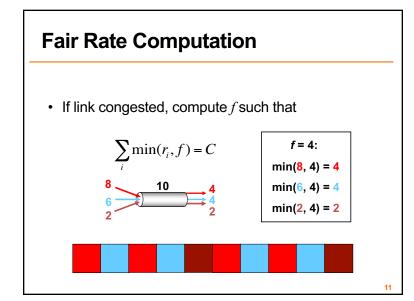
0%

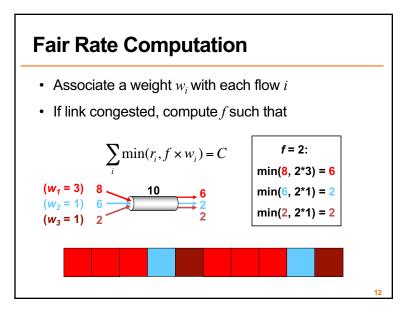
Max-Min Fairness is Powerful

- Weighted Fair Sharing / Proportional Shares
 - User u1 gets weight 2, u2 weight 1
- Priorities: Give u1 weight 1000, u2 weight 1
- Reservations
 - − Ensure u1 gets 10%: Give u1 weight 10, sum weights \leq 100
- Deadline-based scheduling
 - Given a job's demand and deadline, compute user's reservation / weight
- Isolation: Users cannot affect others beyond their share

Max-min Fairness via Fair Queuing

- Fair queuing explained in a fluid flow system: reduces to bit-by-bit round robin among flows
 - Each flow receives $min(r_{i}, f)$, where
 - r_i flow arrival rate
 - *f* link fair rate (see next slide)
- Weighted Fair Queuing (WFQ)
 - Associate a weight with each flow





10

- Share guarantee
 - Each user gets at least 1/n of the resource
 - But will get less if her demand is less

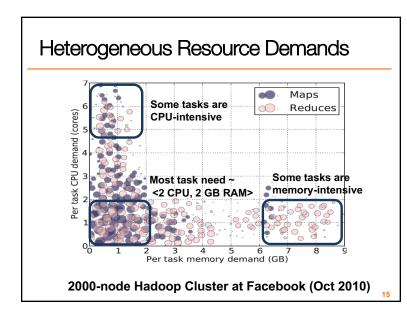
Strategy-proof

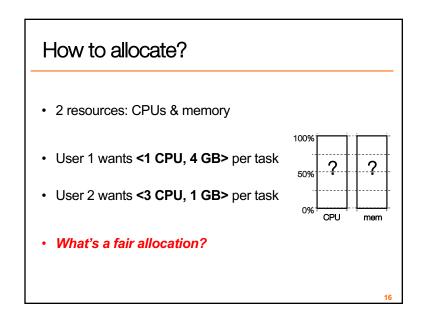
- Users are not better off by asking for more than they need

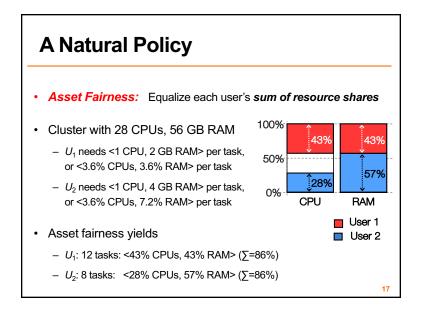
13

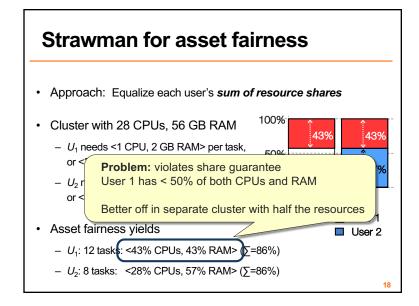
- Users have no reason to lie

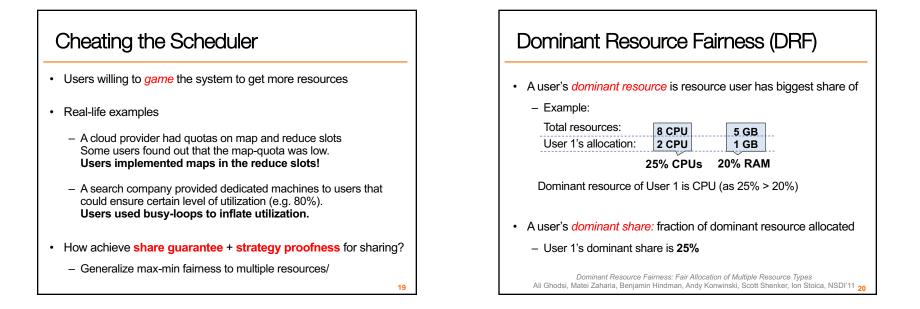
Why is Max-Min Fairness Not Enough? Job scheduling is not only about a *single* resource Tasks consume CPU, memory, network and disk I/O Wind are task demands today?

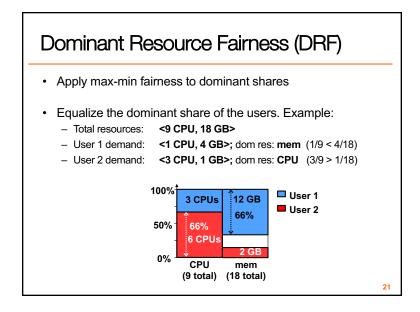


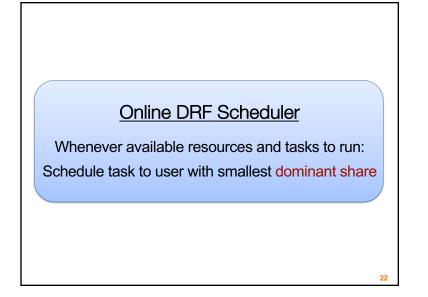












Today's lecture

- 1. Metrics / goals for scheduling resources
- 2. System architecture for big-data scheduling

Many Competing Frameworks

- · Many different "Big Data" frameworks
 - Hadoop | Spark
 - Storm | Spark Streaming | Flink
 - GraphLab
 - MPI
- Heterogeneity will rule
 - No single framework optimal for all applications
 - So...each framework runs on dedicated cluster?

24

One Framework Per Cluster Challenges

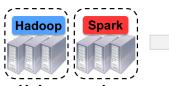
- · Inefficient resource usage
 - E.g., Hadoop cannot use underutilized resources from Spark
 - Not work conserving
- · Hard to share data
 - Copy or access remotely, expensive
- · Hard to cooperate
 - E.g., Not easy for Spark to use graphs generated by Hadoop

25

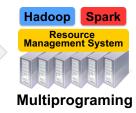
27

Common resource sharing layer ?

- Abstracts ("virtualizes") resources to frameworks
- Enable diverse frameworks to share cluster
- · Make it easier to develop and deploy new frameworks

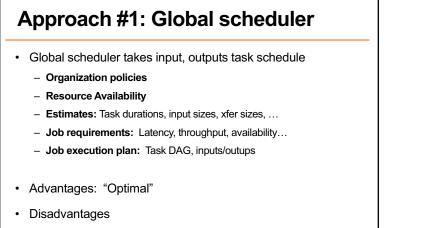


Uniprograming



Abstraction hierarchy 101 In a cluster: ... a *framework* (e.g., Hadoop, Spark) manages 1+ jobs ... a job consists of 1+ tasks ... a task (e.g., map, reduce) involves 1+ processes executing on single machine Executor Executor Job 1: tasks 1, 2, 3, 4 task 1 task 2 Job 2: tasks 5, 6, 7 task 5 ask 6 Framework Scheduler Executor (e.g., Job Tracker) Executor task 3 (e.g., Task task 4

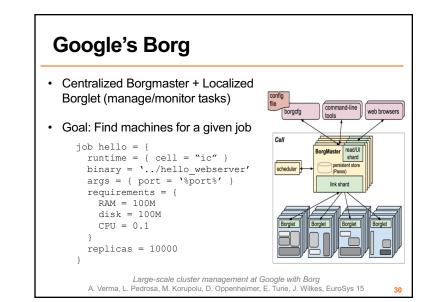
Abstraction hierarchy 101 In a cluster: ... a framework (e.g., Hadoop, Spark) manages 1+ jobs ... a job consists of 1+ tasks ... a task (e.g., map, reduce) involves 1+ processes executing on single machine Seek fine-grained resource sharing ... Tasks typically short: median ~= 10 sec – minutes ... Better data locality / failure-recovery if tasks fine-grained

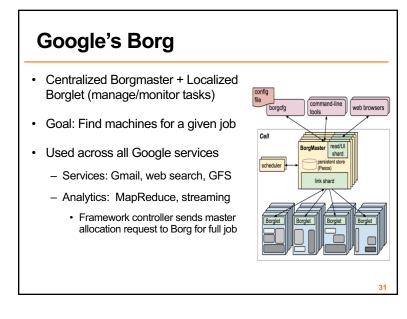


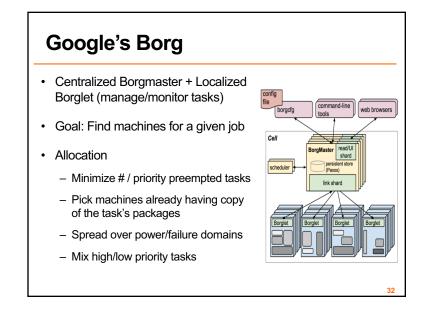
- More complex, harder to scale (yet Google: 10,000s servers/scheduler)

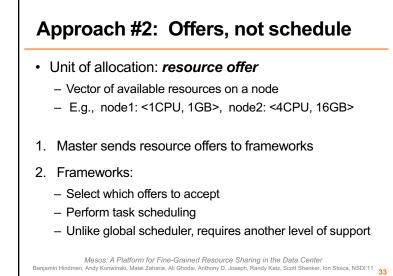
29

Anticipate future requirements, refactor existing









How to allocate resources? DRF!

	CPU	Memory
Cluster Supply	10	20
A's Demand	4 (40%)	2 (10%)
B's Demand	1 (10%)	5 (<mark>25%</mark>)

Cluster: Remaining	Cluster: Offer	A's Allocation	B's Allocation
(10cpu, 20gb)	(2cpu, 2gb) to A	(0cpu, 0gb, 0%)	(0cpu, 0gb, 0%)
(10cpu, 20gb)	(4cpu, 3gb) to A	(4cpu, 3gb, 40%)	(0cpu, 0gb, 0%)
(6cpu, 17gb)	(1cpu, 3gb) to B	(4cpu, 3gb, 40%)	(0cpu, 0gb, 0%)
(5cpu, 12gb)	(1cpu, 5gb) to B	(4cpu, 3gb, 40%)	(1cpu, 5gb, 25%)
(1cpu, 10gb)	(4cpu, 2gb) to A	(8cpu, 5gb, 80%)	(1cpu, 5gb, 25%)
(0cpu, 4gb)	(1cpu, 6gb) to B	(8cpu, 5gb, 80%)	(2cpu, 11gb, 55%)

Today's lecture

- Metrics / goals for scheduling resources
 - Max-min fairness, weighted-fair queuing, DRF
- System architecture for big-data scheduling
 - Central allocator (Borg), two-level resource offers (Mesos)