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Graph Processing

COS 518: Advanced Computer Systems
Lecture 12

Mike Freedman
[Content adapted from K. Jamieson and J. Gonzalez]
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Concrete Examples

Label Propagation
Page Rank

Profile

Label Propagation Algorithm
• Social Arithmetic:

• Recurrence Algorithm:

– iterate until convergence

• Parallelism:
– Compute all Likes[i] in parallel
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Likes[i]= Wij × Likes[ j]
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PageRank Algorithm
• PageRank of u is dependent 

on PR of all pages linking to u, 
divided by the number of links 
from each of these pages

• Recurrence Algorithm:
PR[u] = !v∈Bu PR[v] / L[v]

– iterate until convergence

• Parallelism:
– Compute all PR[u] in parallel

Properties of Graph Parallel Algorithms
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Map-Reduce for Data-Parallel ML
• Excellent for large data-parallel tasks!
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MapReduce MapReduce?
Algorithm 

Tuning
Feature 

Extraction

Basic Data Processing

Problem: Data Dependencies
• MapReduce doesn’t efficiently express

data dependencies
– User must code substantial data transformations 
– Costly data replication
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Iterative Algorithms

• MR doesn’t efficiently express iterative algorithms:
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MapAbuse: Iterative MapReduce
• Only a subset of data needs computation:
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MapAbuse: Iterative MapReduce
• System is not optimized for iteration:
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ML Tasks Beyond Data-Parallelism 

Data-Parallel                     Graph-Parallel
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Next set of readings

• Graph processing
–Why relationships, sampling, and iterations often 

use in graph processing not well fit by MapReduce
– How to take a graph-centric processing perspective

• Machine learning
– These are solving one type of ML algorithm
–What other systems are needed, particularly given 

heavy focus on iterative algorithms
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Today’s readings
• Streaming is about unbounded data sets, not 

particular execution engines

• Streaming is in fact a strict superset of batch, 
Lambda Architecture destined for retirement

• Needs of good streaming systems:  
correctness and tools for reasoning about time.

• Differences between event time and processing time, 
and the challenges they impose
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