
1

Introduction
Principles of System Design

COS 518: Advanced Computer Systems
Lecture 1

Mike Freedman

• Introduction to
– Computer systems principles
– Computer systems research

• Historical and cutting-edge research
• How “systems people” think

• Learn how to
– Read and evaluate papers
– Give talks and evaluate talks
– Perform basic system design and programming
– Build and evaluate systems

2

Goals of this course

• System
– Inside v. outside: defines interface with environment
– A system achieves specific external behavior
– A system has many components

• This class is about the design of computer systems

• Much of class will operate at the design level
– Guarantees (semantics) exposed by components
– Relationships of components
– Internals of components that help structure

What is a system?

4
Backrub (Google) 1997



2

5

Google 2012

100,000s of physical servers
10s MW energy consumption

Facebook Prineville: 
$250M physical infro, $1B IT infra

• Complexity’s hard to define, but symptoms include:

1. Large number of components

2. Large number of connections

3. Irregular structure

4. No short description

5. Many people required to design or maintain

The central problem: Complexity

Course Organization

8



3

• Instructors
– Professor Mike Freedman 
– TA Andrew Or
– Office hours immediately after lecture or by appt

• Main Q&A forum: http://www.piazza.com/

• Optional textbooks
– Principles of Computer System Design. Saltzer & Kaashoek

– Distributed Systems: Principles and Paradigms. 
Tanenbaum & Van Steen

– Guide to Reliable Distributed Systems. Birman. 9

Learning the material Format of Course

• Introducing a subject
– Lecture +  occasional 1 background paper
– Try to present lecture class before reading

• Current research results
– Signup to read 1 of ~3 papers per class
– Before class:  Carefully read selected paper
– Beginning of class (before presentations): answer a few 

questions about readings (“quizlet”) 
– During class: 1 person presents, others add to discussion

10

Course Programming Assignment

• New this year:  “breadth” graduate courses 
require HW assignments

• Most:  Implement RAFT consensus algorithm
– Same assignment as #3 & #4 in COS418

• Some of you have already taken 418
– Convert RAFT implementation to communicate with 

other students’ implementations
– Must successfully interoperate to implement RAFT 

between independent implementations
11

Course Project:  Schedule

• Groups of 2 per project 

• Project schedule

– Team selection (2/9, Friday)
– Project proposal (2/23)
– Project selection (3/2):  Finalize project
– Project presentation (before 5/15, Dean’s Date)
– Final write-up (5/15, Dean’s Date)

12



4

Course Project:  Options  

• Choice #1:  Reproducibility
– Select paper from class (or paper on related topic)
– Re-implement and carefully re-evaluate results
– See detailed proposal instructions on webpage

• Choice #2:  Novelty (less common)
– Must be in area closely related to 518 topics
– We will take a narrow view on what’s permissible

• Both approaches need working code, evaluation
13

Course Project:  Process

• Proposal selection process
– See website for detailed instructions
– Requires research and evaluation plan
– Submit plan via Piazza, get feedback
– For “novelty” track, important to talk with us early

• Final report
– Public blog-like post on design, eval, results
– Source code published

14

Grading

• 10% paper presentation(s)

• 10% participation (in-class, Piazza)

• 10% in-class Q&A quizlets

• 20% programming assignments

• 50% project
– 10% proposal
– 40% final project

15

Organization of semester

• Introduction / Background

• Storage Systems

• Big Data Systems

• Applications

16



5

Storage Systems

• Consistency
• Consensus
• Transactions
• Key-Value Stores
• Column Stores
• Flash Disks
• Caching

17

Big Data Systems

• Batch
• Streaming
• Graph
• Machine Learning
• Geo-distributed
• Scheduling

18

Applications

• Publish/Subscribe
• Distributed Hash Tables (DHTs)
• Content Delivery Networks
• Blockchain
• Security
• Privacy

19

Principles of System Design

20



6

1. Emergent properties (“surprises”)
– Properties not evident in individual components 

become clear when combined into a system

– Millennium bridge, London example

Systems challenges common to many fields

22

• Small lateral movements of the bridge causes
synchronized stepping, which leads to swaying

• Swaying leads to more forceful synchronized 
stepping, leading to more swaying
– Positive feedback loop!

• Nicknamed Wobbly Bridge after charity walk on 
Save the Children

• Closed for two years soon after opening for 
modifications to be made (damping)

Millennium bridge

1. Emergent properties (“surprises”)

2. Propagation of effects
– Small/local disruption à large/systemic effects
– Automobile design example (S & K)

Systems challenges common to many fields



7

• Want a better ride so increase tire size

• Need larger trunk for larger spare tire space

• Need to move the back seat forward to accommodate 
larger trunk

• Need to make front seats thinner to accommodate 
reduced legroom in the back seats

• Worse ride than before

Propagation of effects: Auto design

1. Emergent properties (“surprises”)

2. Propagation of effects

3. Incommensurate scaling
– Design for a smaller model may not scale

Systems challenges common to many fields

“To illustrate briefly, I have sketched a bone whose natural length has
been increased three times and whose thickness has been multiplied
until, for a correspondingly large animal, it would perform the same
function which the small bone performs for its small animal…

Thus a small dog could probably carry on his back two or three dogs
of his own size; but I believe that a horse could not carry even one of
his own size.”

—Dialog Concerning Two New Sciences, 2nd Day

Galileo in 1638

• Scaling a mouse into an elephant?
– Volume grows in proportion to O(x3) where 

x is the linear measure
– Bone strength grows in proportion to cross 

sectional area, O(x2)
– [Haldane, “On being the right size”, 1928]

• Real elephant requires different skeletal 
arrangement than the mouse

28

Incommensurate scaling



8

• Just 39 hosts as the ARPA net back in 1973

29

Incommensurate scaling:
Scaling routing in the Internet

• Total size of routing tables (for shortest paths): O(n2)

• Today’s Internet: Techniques to cope with scale
– Hierarchical routing on network numbers

• 32 bit address =16 bit network # and 16 bit host #
– Limit # of hosts/network: Network address translation

30

Incommensurate scaling:
Scaling routing in the Internet

Incommensurate Scaling: Ethernet
• All computers share single cable
• Goal is reliable delivery
• Listen-while-send to avoid collisions

• 1 km at 60% speed of light is 5 μs
– A can send 15 bits before first bit arrives at B

• Thus A must keep sending for 2×5 μs
– To detect collision if B sends when first bit arrives

• Thus, min packet size is 2×5 μs×3 Mbit/s = 30 bits

Will listen-while-send detect collisions?



9

• Experimental Ethernet design: 3 Mbit/s
– Default header is 5 bytes = 40 bits
– No problem with detecting collisions

• First Ethernet standard: 10 Mbit/s
– Must send for 2 × 20 μs = 400 bits

• But header is just 112 bits

– Need for a minimum packet size!

• Solution: Pad packets to at least 50 bytes

From experimental Ethernet to standard
1. Emergent properties (“surprises”)

2. Propagation of effects

3. Incommensurate scaling

4. Trade-offs
– Many design constraints present as trade-offs
– Improving one aspect of a system diminishes 

performance elsewhere

Systems challenges common to many fields

• Have a proxy signal that imperfectly captures 
real signal of interest

• Example: Household smoke detector

35

Binary classification trade-off
1. Cascading and interacting requirements

– Example: Telephone system
• Features: Call Forwarding, reverse billing (900 numbers), 

Call Number Delivery Blocking, Automatic Call Back, 
Itemized Billing

– A calls B, B forwards to 900 number, who pays?

Sources of complexity

A B

CNDB ACB + IB • A calls B, B is busy
• Once B done, B calls A
• A’s # appears on B’s bill



10

• Each feature has a spec
• An interaction is bad if feature X breaks feature Y

• These bad interactions may be fixable…
– But many interactions to consider: huge complexity
– Perhaps more than n2 interactions, e.g. triples
– Cost of thinking about / fixing interaction gradually 

grows to dominate software costs

• Complexity is super-linear

Interacting Features
1. Cascading and interacting requirements

2. Maintaining high utilization of a scarce resource
– Ex: Single-track railroad line through long canyon

• Use pullout and signal to allow bidirectional op
• But now need careful scheduling
• Emergent property: Train length < pullout length

Sources of complexity

1. Modularity
– Divide system into modules, consider each separately
– Well-defined interfaces give flexibility and isolation

• Example: bug count in a large, N-line codebase
– Bug count ∝N
– Debug time ∝N × bug count ∝N2

• Now divide the N-line codebase into K modules
– Debug time ∝ (N / K)2 × K = N2/K

Coping with complexity

1. Modularity

2. Abstraction
– Ability of any module to treat others like “black box”

• Just based on interface
• Without regard to internal implementation 

– Symptoms
• Fewer interactions between modules
• Less propagation of effects between modules

Coping with complexity



11

1. Modularity

2. Abstraction
– The Robustness Principle:                                    

Be tolerant of inputs and strict on outputs

Coping with complexity

42

Robustness principle in action:
The digital abstraction

1. Modularity

2. Abstraction

3. Hierarchy
– Start with small group of modules, assemble

• Assemble those assemblies, etc.
– Reduces connections, constraints, interactions

Coping with complexity
1. Modularity

2. Abstraction

3. Hierarchy

4. Layering
– A form of modularity
– Gradually build up a system, layer by layer
– Example: Internet protocol stack

Coping with complexity



12

Layering on the Internet: The problem

• Re-implement every app for every new tx media?

• Change apps on any change to tx media (+ vice versa)? 

• No! But how does the Internet design avoid this?

Applications

Transmission 
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

Layering on the Internet: 
Intermediate layers provide a solution

• Intermediate layers provide abstractions for app, media

• New apps or media need only implement against 
intermediate layers’ interface

Intermediate layers

Applications

Transmission 
media

SkypeHTTP SSH FTP

Coaxial cable Fiber optic Wi-Fi

1. Often unconstrained by physical laws
– Computer systems are mostly digital

– Contrast: Analog systems have physical 
limitations (degrading copies of analog music media)

– Back to the digital static discipline
• Static discipline restores signal levels
• Can scale microprocessors to billions of gates, 

encounter new, interesting emergent properties

47

Computer systems: The same, but different

1. Often unconstrained by physical laws

2. Unprecedented d(technology)/dt
– Many examples:

• Magnetic disk storage price per gigabyte
• RAM storage price per gigabyte
• Optical fiber transmission speed

– Result: Incommensurate scaling, with system 
redesign consequences

48

Computer systems: The same, but different



13

Incommensurate scaling on the Internet
Normalized growth since 1981

Number of Internet hosts

Bits/second/$ (approximate)

Speed of light, 
Shannon capacity, 

Backhoe rental price

• Expect surprises in system design

• There is no small change in a system

• 10-100× increase? Þ perhaps re-design

• Complexity is super-linear in system size

• Performance cost is super-linear in system size

• Reliability cost is super-linear in system size

• Technology’s high rate of change induces 
incommensurate scaling

Summary and lessons

For Wed, everybody reads 

1) Lampson’s Hints
2) Saltzer E2E

51


