Introduction
Principles of System Design

Goals of this course

COS 518: Advanced Computer Systems
Lecture 1

Mike Freedman

* Introduction to
— Computer systems principles
— Computer systems research
« Historical and cutting-edge research
* How “systems people” think

* Learn how to
— Read and evaluate papers
— Give talks and evaluate talks
— Perform basic system design and programming
— Build and evaluate systems

What is a system?

+ System
— Inside v. outside: defines interface with environment
— A system achieves specific external behavior
— A system has many components

» This class is about the design of computer systems

* Much of class will operate at the design level

— Guarantees (semantics) exposed by components
— Relationships of components
— Internals of components that help structure

Backrub (Google) 1997

Google 2012 =\
w— =

The central problem: Complexity

» Complexity’s hard to define, but symptoms include:
1.

2.

Large number of components
Large number of connections

Irregular structure

. No short description

Many people required to design or maintain

100,000s of physical servers :
“410s MW energy consumption \‘ 4

N
N TR
% -y

H’l

l\l[! Facebook Prineville: S
* 50M physical infra, $1é IT |nfr

g

Course Organization

Learning the material

* Instructors
— Professor Mike Freedman
— TAAndrew Or
— Office hours immediately after lecture or by appt

* Main Q&A forum: http://www.piazza.com/

* Optional textbooks

— Principles of Computer System Design. Saltzer & Kaashoek

— Distributed Systems: Principles and Paradigms.
Tanenbaum & Van Steen

— Guide to Reliable Distributed Systems. Birman.

Format of Course

* Introducing a subject
— Lecture + occasional 1 background paper
— Try to present lecture class before reading

* Current research results
— Signup to read 1 of ~3 papers per class
— Before class: Carefully read selected paper

— Beginning of class (before presentations): answer a few
questions about readings (“quizlet”)

— During class: 1 person presents, others add to discussion

10

Course Programming Assignment

* New this year: “breadth” graduate courses
require HW assignments

* Most: Implement RAFT consensus algorithm
— Same assignment as #3 & #4 in COS418

» Some of you have already taken 418

— Convert RAFT implementation to communicate with
other students’ implementations

— Must successfully interoperate to implement RAFT
between independent implementations

Course Project: Schedule

» Groups of 2 per project

* Project schedule

— Team selection (2/9, Friday)

— Project proposal (2/23)

— Project selection (3/2): Finalize project

— Project presentation (before 5/15, Dean’s Date)
— Final write-up (5/15, Dean’s Date)

Course Project: Options

Course Project: Process

* Choice #1: Reproducibility
— Select paper from class (or paper on related topic)
— Re-implement and carefully re-evaluate results
— See detailed proposal instructions on webpage

* Choice #2: Novelty (less common)
— Must be in area closely related to 518 topics
— We will take a narrow view on what’s permissible

» Both approaches need working code, evaluation

13

* Proposal selection process
— See website for detailed instructions
— Requires research and evaluation plan
— Submit plan via Piazza, get feedback
— For “novelty” track, important to talk with us early

* Final report
— Public blog-like post on design, eval, results
— Source code published

Grading

Organization of semester

* 10% paper presentation(s)

* 10% participation (in-class, Piazza)
* 10% in-class Q&A quizlets

* 20% programming assignments

* 50% project
— 10% proposal
— 40% final project

Introduction / Background

Storage Systems

Big Data Systems

Applications

Storage Systems

» Consistency
» Consensus

* Transactions

Key-Value Stores

Column Stores
Flash Disks
» Caching

Big Data Systems

» Batch

+ Streaming

» Graph

* Machine Learning
Geo-distributed
Scheduling

Applications

* Publish/Subscribe
Distributed Hash Tables (DHTSs)
Content Delivery Networks

Blockchain
» Security

* Privacy

Principles of System Design

Systems challenges common to many fields

1. Emergent properties (“surprises”)

— Properties not evident in individual components
become clear when combined into a system

— Millennium bridge, London example

Millennium bridge

» Small lateral movements of the bridge causes
synchronized stepping, which leads to swaying

» Swaying leads to more forceful synchronized
stepping, leading to more swaying
— Positive feedback loop!

» Nicknamed Wobbly Bridge after charity walk on
Save the Children

+ Closed for two years soon after opening for
modifications to be made (damping)

Systems challenges common to many fields

1. Emergent properties (“surprises”)

2. Propagation of effects
— Small/local disruption - large/systemic effects
— Automobile design example (S & K)

Propagation of effects: Auto design

Systems challenges common to many fields

« Want a better ride so increase tire size

* Need larger trunk for larger spare tire space

* Need to move the back seat forward to accommodate

larger trunk

* Need to make front seats thinner to accommodate

reduced legroom in the back seats

¢ Worse ride than before

1. Emergent properties (“surprises”)

2. Propagation of effects

3. Incommensurate scaling
— Design for a smaller model may not scale

Galileo in 1638

Incommensurate scaling

Fig. 27

“To illustrate briefly, | have sketched a bone whose natural length has
been increased three times and whose thickness has been multiplied
until, for a correspondingly large animal, it would perform the same

function which the small bone performs for its small animal...

Thus a small dog could probably carry on his back two or three dogs
of his own size; but | believe that a horse could not carry even one of

his own size.”

—Dialog Concerning Two New Sciences, 2" Day

» Scaling a mouse into an elephant?

— Volume grows in proportion to O(x3) where
X is the linear measure

— Bone strength grows in proportion to cross
sectional area, O(x?)

— [Haldane, “On being the right size”, 1928]

» Real elephant requires different skeletal
arrangement than the mouse

28

Incommensurate scaling:
Scaling routing in the Internet

» Just 39 hosts as the ARPA net back in 1973

ARPA NETWORK, LOGICAL MAP, SEPTEMBER 1973

29

Incommensurate scaling:
Scaling routing in the Internet

=2

« Total size of routing tables (for shortest paths): O(n?)

» Today’s Internet: Techniques to cope with scale
— Hierarchical routing on network numbers
+ 32 bit address =16 bit network # and 16 bit host #
— Limit # of hosts/network: Network address translation

30

Incommensurate Scaling: Ethernet

+ All computers share single cable
* Goal is reliable delivery
* Listen-while-send to avoid collisions

4 A
TE:\:;&CE\\’E? DI
TA\P‘ Wl groer ey -
INTCRFACE 7 by
CONTRQULER,
= e A
_ THE ETHER y,

Will listen-while-send detect collisions?

* 1 km at 60% speed of light is 5 ps
— A can send 15 bits before first bit arrives at B

* Thus A must keep sending for 2 X 5 us
— To detect collision if B sends when first bit arrives

* Thus, min packet size is 2 X 5 ys X 3 Mbit/s = 30 bits

1km at 3 Mbit/s

dowootoomoioii < ©

From experimental Ethernet to standard

» Experimental Ethernet design: 3 Mbit/s
— Default header is 5 bytes = 40 bits
— No problem with detecting collisions

» First Ethernet standard: 10 Mbit/s

— Must send for 2 x 20 ys = 400 bits
» But header is just 112 bits
— Need for a minimum packet size!

+ Solution: Pad packets to at least 50 bytes

Systems challenges common to many fields

N

. Emergent properties (“surprises”)

N

Propagation of effects

3. Incommensurate scaling

4. Trade-offs
— Many design constraints present as trade-offs

— Improving one aspect of a system diminishes
performance elsewhere

Binary classification trade-off

» Have a proxy signal that imperfectly captures
real signal of interest

+ Example: Household smoke detector
Real categories

fire no fire

detector TA: fire FA: false
Proxy signals extinguished alarm
categories yetector TR: all
quiet burns down quiet

35

Sources of complexity

1. Cascading and interacting requirements
— Example: Telephone system

* Features: Call Forwarding, reverse billing (900 numbers),
Call Number Delivery Blocking, Automatic Call Back,
Itemized Billing

— A calls B, B forwards to 900 number, who pays?

* Acalls B, B is busy

ACB + IB

CNDB
* Once B done, B calls A
’ ‘ » A's # appears on B’s bill

Interacting Features

Sources of complexity

» Each feature has a spec
« An interaction is bad if feature X breaks feature Y

» These bad interactions may be fixable...
— But many interactions to consider: huge complexity
— Perhaps more than n? interactions, e.g. triples

— Cost of thinking about / fixing interaction gradually
grows to dominate software costs

» Complexity is super-linear

1. Cascading and interacting requirements

2. Maintaining high utilization of a scarce resource
— Ex: Single-track railroad line through long canyon
» Use pullout and signal to allow bidirectional op
+ But now need careful scheduling
+ Emergent property: Train length < pullout length

Coping with complexity

Coping with complexity

1. Modularity
— Divide system into modules, consider each separately

— Well-defined interfaces give flexibility and isolation

* Example: bug countin a large, N-line codebase

— Bug count < N
— Debug time o< N X bug count oc N2

« Now divide the N-line codebase into K modules
— Debug time o< (N/K$ x K = NZ/K

1. Modularity

2. Abstraction
— Ability of any module to treat others like “black box”
« Just based on interface
» Without regard to internal implementation
— Symptoms
* Fewer interactions between modules
* Less propagation of effects between modules

10

Coping with complexity

Robustness principle in action:
The digital abstraction

1. Modularity

2. Abstraction

— The Robustness Principle:
Be tolerant of inputs and strict on outputs

SV 5V

{ Valid
i
4 v|You

.) 3
“1 Noise 7
margin " /H| 3.5 V.
Forbidden

Sender region Receiver

VII. 2V
Nolse
“(15V v(;/, |;|:nr§||| “
Valid
0
ov

ov

42

Coping with complexity

Coping with complexity

1. Modularity

2. Abstraction

3. Hierarchy
— Start with small group of modules, assemble
« Assemble those assemblies, etc.
— Reduces connections, constraints, interactions

1.

Modularity
Abstraction
Hierarchy

Layering

— A form of modularity

— Gradually build up a system, layer by layer
— Example: Internet protocol stack

1"

Layering on the Internet: The problem

Applications | mrTe | [skype | [ssu |

Transmission

; Wi-Fi |
media

| Coaxial cable | | Fiber opt:i.cl

* Re-implement every app for every new tx media?
» Change apps on any change to tx media (+ vice versa)?

* No! But how does the Internet design avoid this?

Layering on the Internet:
Intermediate layers provide a solution

Applications | mrre || skype | [ssu | | Fre |

i Intermediate layers i

Transmission

media |Coaxial cable ||Fiber opticl | Wi-Fi |

+ Intermediate layers provide abstractions for app, media

* New apps or media need only implement against
intermediate layers’ interface

Computer systems: The same, but different

1. Often unconstrained by physical laws
— Computer systems are mostly digital

— Contrast: Analog systems have physical
limitations (degrading copies of analog music media)

— Back to the digital static discipline
» Static discipline restores signal levels

* Can scale microprocessors to billions of gates,
encounter new, interesting emergent properties

47

Computer systems: The same, but different

1. Often unconstrained by physical laws

2. Unprecedented d(technology)/dt

— Many examples:
* Magnetic disk storage price per gigabyte
* RAM storage price per gigabyte
» Optical fiber transmission speed

— Result: Incommensurate scaling, with system
redesign consequences

48

12

Incommensurate scaling on the Internet

107 Normalized growth since 1981

108
10°
104 o
1,000 . ""'f
100 -
10 -
1

Number of Internet hosts __ .uw=e=

1980 1985 1990 1995 2000 2005 2010
Speed of light,
Shannon capacity,
Backhoe rental price

Year

Summary and lessons

For Wed, everybody reads

1) Lampson’s Hints
2) Saltzer E2E

Expect surprises in system design

There is no small change in a system

10-100 X increase? = perhaps re-design
Complexity is super-linear in system size
Performance cost is super-linear in system size
Reliability cost is super-linear in system size

Technology’s high rate of change induces
incommensurate scaling

13

