Introduction
Principles of System Design

Goals of this course

COS 518: Advanced Computer Systems
Lecture 1

Mike Freedman

* Introduction to
— Computer systems principles
— Computer systems research
« Historical and cutting-edge research
* How “systems people” think

* Learn how to
— Read and evaluate papers
— Give talks and evaluate talks
— Perform basic system design and programming
— Build and evaluate systems

What is a system?

+ System
— Inside v. outside: defines interface with environment
— A system achieves specific external behavior
— A system has many components

» This class is about the design of computer systems

* Much of class will operate at the design level

— Guarantees (semantics) exposed by components
— Relationships of components
— Internals of components that help structure
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The central problem: Complexity

» Complexity’s hard to define, but symptoms include:
1.

2.

Large number of components
Large number of connections

Irregular structure

. No short description

Many people required to design or maintain
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Learning the material

* Instructors
— Professor Mike Freedman
— TAAndrew Or
— Office hours immediately after lecture or by appt

* Main Q&A forum: http://www.piazza.com/

* Optional textbooks

— Principles of Computer System Design. Saltzer & Kaashoek

— Distributed Systems: Principles and Paradigms.
Tanenbaum & Van Steen

— Guide to Reliable Distributed Systems. Birman.

Format of Course

* Introducing a subject
— Lecture + occasional 1 background paper
— Try to present lecture class before reading

* Current research results
— Signup to read 1 of ~3 papers per class
— Before class: Carefully read selected paper

— Beginning of class (before presentations): answer a few
questions about readings (“quizlet”)

— During class: 1 person presents, others add to discussion
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Course Programming Assignment

* New this year: “breadth” graduate courses
require HW assignments

* Most: Implement RAFT consensus algorithm
— Same assignment as #3 & #4 in COS418

» Some of you have already taken 418

— Convert RAFT implementation to communicate with
other students’ implementations

— Must successfully interoperate to implement RAFT
between independent implementations

Course Project: Schedule

» Groups of 2 per project

* Project schedule

— Team selection (2/9, Friday)

— Project proposal (2/23)

— Project selection (3/2): Finalize project

— Project presentation (before 5/15, Dean’s Date)
— Final write-up (5/15, Dean’s Date)




Course Project: Options

Course Project: Process

* Choice #1: Reproducibility
— Select paper from class (or paper on related topic)
— Re-implement and carefully re-evaluate results
— See detailed proposal instructions on webpage

* Choice #2: Novelty (less common)
— Must be in area closely related to 518 topics
— We will take a narrow view on what’s permissible

» Both approaches need working code, evaluation
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* Proposal selection process
— See website for detailed instructions
— Requires research and evaluation plan
— Submit plan via Piazza, get feedback
— For “novelty” track, important to talk with us early

* Final report
— Public blog-like post on design, eval, results
— Source code published

Grading

Organization of semester

* 10% paper presentation(s)

* 10% participation (in-class, Piazza)
* 10% in-class Q&A quizlets

* 20% programming assignments

* 50% project
— 10% proposal
— 40% final project

Introduction / Background

Storage Systems

Big Data Systems

Applications




Storage Systems

» Consistency
» Consensus

* Transactions

Key-Value Stores

Column Stores
Flash Disks
» Caching

Big Data Systems

» Batch

+ Streaming

» Graph

* Machine Learning
Geo-distributed
Scheduling

Applications

* Publish/Subscribe
Distributed Hash Tables (DHTSs)
Content Delivery Networks

Blockchain
» Security

* Privacy

Principles of System Design




Systems challenges common to many fields

1. Emergent properties (“surprises”)

— Properties not evident in individual components
become clear when combined into a system

— Millennium bridge, London example

Millennium bridge

» Small lateral movements of the bridge causes
synchronized stepping, which leads to swaying

» Swaying leads to more forceful synchronized
stepping, leading to more swaying
— Positive feedback loop!

» Nicknamed Wobbly Bridge after charity walk on
Save the Children

+ Closed for two years soon after opening for
modifications to be made (damping)

Systems challenges common to many fields

1. Emergent properties (“surprises”)

2. Propagation of effects
— Small/local disruption - large/systemic effects
— Automobile design example (S & K)




Propagation of effects: Auto design

Systems challenges common to many fields

« Want a better ride so increase tire size

* Need larger trunk for larger spare tire space

* Need to move the back seat forward to accommodate

larger trunk

* Need to make front seats thinner to accommodate

reduced legroom in the back seats

¢ Worse ride than before

1. Emergent properties (“surprises”)

2. Propagation of effects

3. Incommensurate scaling
— Design for a smaller model may not scale

Galileo in 1638

Incommensurate scaling

Fig. 27

“To illustrate briefly, | have sketched a bone whose natural length has
been increased three times and whose thickness has been multiplied
until, for a correspondingly large animal, it would perform the same

function which the small bone performs for its small animal...

Thus a small dog could probably carry on his back two or three dogs
of his own size; but | believe that a horse could not carry even one of

his own size.”

—Dialog Concerning Two New Sciences, 2" Day

» Scaling a mouse into an elephant?

— Volume grows in proportion to O(x3) where
X is the linear measure

— Bone strength grows in proportion to cross
sectional area, O(x?)

— [Haldane, “On being the right size”, 1928]

» Real elephant requires different skeletal
arrangement than the mouse
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Incommensurate scaling:
Scaling routing in the Internet

» Just 39 hosts as the ARPA net back in 1973

ARPA NETWORK, LOGICAL MAP, SEPTEMBER 1973
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Incommensurate scaling:
Scaling routing in the Internet

=2

« Total size of routing tables (for shortest paths): O(n?)

» Today’s Internet: Techniques to cope with scale
— Hierarchical routing on network numbers
+ 32 bit address =16 bit network # and 16 bit host #
— Limit # of hosts/network: Network address translation
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Incommensurate Scaling: Ethernet

+ All computers share single cable
* Goal is reliable delivery
* Listen-while-send to avoid collisions
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Will listen-while-send detect collisions?

* 1 km at 60% speed of light is 5 ps
— A can send 15 bits before first bit arrives at B

* Thus A must keep sending for 2 X 5 us
— To detect collision if B sends when first bit arrives

* Thus, min packet size is 2 X 5 ys X 3 Mbit/s = 30 bits

1km at 3 Mbit/s
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From experimental Ethernet to standard

» Experimental Ethernet design: 3 Mbit/s
— Default header is 5 bytes = 40 bits
— No problem with detecting collisions

» First Ethernet standard: 10 Mbit/s

— Must send for 2 x 20 ys = 400 bits
» But header is just 112 bits
— Need for a minimum packet size!

+ Solution: Pad packets to at least 50 bytes

Systems challenges common to many fields

N

. Emergent properties (“surprises”)

N

Propagation of effects

3. Incommensurate scaling

4. Trade-offs
— Many design constraints present as trade-offs

— Improving one aspect of a system diminishes
performance elsewhere

Binary classification trade-off

» Have a proxy signal that imperfectly captures
real signal of interest

+ Example: Household smoke detector
Real categories

fire no fire

detector TA: fire FA: false
Proxy signals extinguished alarm
categories  yetector TR: all
quiet burns down quiet
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Sources of complexity

1. Cascading and interacting requirements
— Example: Telephone system

* Features: Call Forwarding, reverse billing (900 numbers),
Call Number Delivery Blocking, Automatic Call Back,
Itemized Billing

— A calls B, B forwards to 900 number, who pays?

* Acalls B, B is busy

ACB + IB

CNDB
* Once B done, B calls A
’ ‘ » A's # appears on B’s bill




Interacting Features

Sources of complexity

» Each feature has a spec
« An interaction is bad if feature X breaks feature Y

» These bad interactions may be fixable...
— But many interactions to consider: huge complexity
— Perhaps more than n? interactions, e.g. triples

— Cost of thinking about / fixing interaction gradually
grows to dominate software costs

» Complexity is super-linear

1. Cascading and interacting requirements

2. Maintaining high utilization of a scarce resource
— Ex: Single-track railroad line through long canyon
» Use pullout and signal to allow bidirectional op
+ But now need careful scheduling
+ Emergent property: Train length < pullout length

Coping with complexity

Coping with complexity

1. Modularity
— Divide system into modules, consider each separately

— Well-defined interfaces give flexibility and isolation

* Example: bug countin a large, N-line codebase

— Bug count < N
— Debug time o< N X bug count oc N2

« Now divide the N-line codebase into K modules
— Debug time o< (N/K$ x K = NZ/K

1. Modularity

2. Abstraction
— Ability of any module to treat others like “black box”
« Just based on interface
» Without regard to internal implementation
— Symptoms
* Fewer interactions between modules
* Less propagation of effects between modules
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Coping with complexity

Robustness principle in action:
The digital abstraction

1. Modularity

2. Abstraction

— The Robustness Principle:
Be tolerant of inputs and strict on outputs
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Coping with complexity

Coping with complexity

1. Modularity

2. Abstraction

3. Hierarchy
— Start with small group of modules, assemble
« Assemble those assemblies, etc.
— Reduces connections, constraints, interactions

1.

Modularity
Abstraction
Hierarchy

Layering

— A form of modularity

— Gradually build up a system, layer by layer
— Example: Internet protocol stack

1"



Layering on the Internet: The problem

Applications | mrTe | [ skype | [ ssu |

Transmission

; Wi-Fi |
media

| Coaxial cable | | Fiber opt:i.cl

* Re-implement every app for every new tx media?
» Change apps on any change to tx media (+ vice versa)?

* No! But how does the Internet design avoid this?

Layering on the Internet:
Intermediate layers provide a solution

Applications | mrre || skype | [ ssu | | Fre |

i Intermediate layers i

Transmission

media |Coaxial cable ||Fiber opticl | Wi-Fi |

+ Intermediate layers provide abstractions for app, media

* New apps or media need only implement against
intermediate layers’ interface

Computer systems: The same, but different

1. Often unconstrained by physical laws
— Computer systems are mostly digital

— Contrast: Analog systems have physical
limitations (degrading copies of analog music media)

— Back to the digital static discipline
» Static discipline restores signal levels

* Can scale microprocessors to billions of gates,
encounter new, interesting emergent properties
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Computer systems: The same, but different

1. Often unconstrained by physical laws

2. Unprecedented d(technology)/dt

— Many examples:
* Magnetic disk storage price per gigabyte
* RAM storage price per gigabyte
» Optical fiber transmission speed

— Result: Incommensurate scaling, with system
redesign consequences
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Incommensurate scaling on the Internet

107 Normalized growth since 1981
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Summary and lessons

For Wed, everybody reads

1) Lampson’s Hints
2) Saltzer E2E

Expect surprises in system design

There is no small change in a system

10-100 X increase? = perhaps re-design
Complexity is super-linear in system size
Performance cost is super-linear in system size
Reliability cost is super-linear in system size

Technology’s high rate of change induces
incommensurate scaling

13



