Class Meeting \#20 COS 226 - Spring 2018

Mark Braverman
(based on slides by Robert Sedgewick and Kevin Wayne)

Linear programming

- A "Swiss army knife" for optimization algorithms.
- Can solve a large fraction of optimization problems efficiently.
- Good libraries in most languages.
- "Duality" an important concept with connections to Game Theory and other areas.

Linear programming
What is it? Problem-solving model for optimal allocation of scarce resources, among a number of competing activities that encompasses:

- Shortest paths, maxflow, MST, matching, assignment, ...
- 2-person zero-sum games, ...

maximize	$13 A+23 B$	
subject	$5 A+15 B \leq 480$	
to the	$4 A+4 B \leq 160$	
constraints	$35 A+20 B$	≤ 1190
	A	B

Toy LP example: brewer's problem
Small brewery produces ale and beer.

- Production limited by scarce resources: corn, hops, barley malt.

- Recipes for ale and beer require different proportions of resources.

Toy LP example: brewer's problem
Brewer's problem: choose product mix to maximize profits.

Brewer's problem: linear programming formulation
Linear programming formulation.

- Let A be the number of barrels of ale.
- Let B be the number of barrels of beer.

	ale		beer			profits
maximize	13A	+	23B			
subject	5A	+	15B	\leq	480	corn
to the	4A	+	4B	\leq	160	hops
constraints	35A	+	20B	\leq	1190	malt
	A	,	B	\geq	0	

Brewer's problem: feasible region
Inequalities define halfplanes; feasible region is a convex polygon.

Brewer's problem: objective function

Brewer's problem: geometry

Optimal solution occurs at an extreme point.

intersection of 2 constraints in 2d

Geometry
Inequalities define halfspaces; feasible region is a convex polyhedron.
A set is convex if for any two points a and b in the set, so is $1 / 2(a+b)$.
An extreme point of a set is a point in the set that can't be written as $1 / 2(a+b)$, where a and b are two distinct points in the set.

not convex

convex

Geometry (continued)
Extreme point property. If there exists an optimal solution to (P), then there exists one that is an extreme point.
Good news? Bad news?

Simplex algorithm
Simplex algorithm. [George Dantzig, 1947]

- Developed shortly after WWII in response to logistical problems, including Berlin airlift.
- Ranked as one of top 10 scientific algorithms of $20^{\text {th }}$ century.

Generic algorithm.

- Start at some extreme point.
never decreasing objective function
- Pivot from one extreme point to an adjacent one.
- Repeat until optimal.

How to implement? Linear algebra.

LP duality: mathematical view
Brewer's problem. Find optimal mix of beer and ale to maximize profits.

maximize	13 A	+23 B			
subject	5 A	+15 B	≤ 480 corn	$\mathrm{A}^{*}=12$	
to the	4 A	+4 B	≤ 160 hops	$\mathrm{B}^{*}=28$	
constraints	35 A	+20 B	≤ 1190 malt		
	A	,	B	≥ 000	

Brewer to Analyst: "Can you prove to me that I can't make more than \$800?"
Analyst:

LP duality: mathematical view
Brewer's problem. Find optimal mix of beer and ale to maximize profits.

maximize	13 A	+23 B			
subject	5 A	+15 B	≤ 480 corn	$\mathrm{A}^{*}=12$	
to the	4 A	+4 B	≤ 160 hops	$\mathrm{B}^{*}=28$	
constraints	35 A	+	20 B	\leq	1190 malt
	A	,	B	≥ 000	

Brewer to Analyst: "Can you prove to me that I can't make more than \$800?"
Analyst:

	13A	$+$	23B		
	5 A	+	15B	\leq	480
2 x	4A	+	4B	\leq	160
	8 A	+	8 B	\leq	320
1+3	13 A	+	23 B	\leq	800

Brewer: "Amazing, how did you do it?"

Brewer's problem: feasible region
Inequalities define halfplanes; feasible region is a convex polygon.

Analyst's problem: give the best estimate on profits
Brewer's problem. Find optimal mix of beer and ale to maximize profits.

maximize	13 A	+23 B			
subject	5 A	+15 B	≤ 480 corn	$\mathrm{A}^{*}=12$	
to the	4 A	+4 B	≤ 160 hops	$\mathrm{B}^{*}=28$	
constraints	35 A	+20 B	≤ 1190 malt		
	A	,	B	≥ 000	

Analyst: "Can I prove that Brewer can't make more than \$800?" Analyst:

Analyst's problem: give the best estimate on profits
Brewer's problem. Find optimal mix of beer and ale to maximize profits.

maximize	13 A	+23 B			
subject	5 A	+15 B	≤ 480 corn	$\mathrm{A}^{*}=12$	
to the	4 A	+4 B	≤ 160 hops	$\mathrm{B}^{*}=28$	
constraints	35 A	+20 B	≤ 1190 malt		
	A	,	B	≥ 000	

Analyst: "Can I prove that Brewer can't make more than \$800?" Analyst:

	13 A	+	23 B		
Cx	5 A	+	15 B	\leq	480
Hx	4 A	+	4 B	\leq	160
Mx	35 A	+	20 B	\leq	1190
	$(5 \mathrm{C}+4 \mathrm{H}+35 \mathrm{M}) \mathrm{A}$	+	$(15 \mathrm{C}+4 \mathrm{H}+20 \mathrm{M}) \mathrm{B}$	\leq	$480 \mathrm{C}+160 \mathrm{H}+1190 \mathrm{M}$

Analyst's problem

- Self-certifying to be optimal!
- Not coincidental.

Strong LP duality theorem

Goal. Given a matrix A and vectors b and c, find vectors x and y that solve:

primal problem (P)	dual problem (D)		
maximize	$C^{\top} x$	minimize	$b^{\top} y$
subject	$A x \leq b$	subject	$A^{\top} y \geq c$
to the	to the		
constraints	$x \geq 0$	constraints	$y \geq 0$

Proposition. If (P) and (D) have feasible solutions, then $\max =\min$.

LP duality: sensitivity analysis
Q. How much should brewer be willing to pay (marginal price) for additional supplies of scarce resources?

Analyst's problem

- Self-certifying to be optimal!
- Not coincidental.

LP duality: sensitivity analysis

Q. How much should brewer be willing to pay (marginal price) for additional supplies of scarce resources?
A. corn $\$ 1$, hops $\$ 2$, malt $\$ 0$.
Q. Suppose a new product "light beer" is proposed. It requires 2 corn, 5 hops, 24 malt. How much profit must be obtained from light beer to justify diverting resources from production of beer and ale?

Analyst's problem

- Self-certifying to be optimal!
- Not coincidental.

LP duality: sensitivity analysis

Q. How much should brewer be willing to pay (marginal price) for additional supplies of scarce resources?
A. corn $\$ 1$, hops $\$ 2$, malt $\$ 0$.
Q. Suppose a new product "light beer" is proposed. It requires 2 corn, 5 hops, 24 malt. How much profit must be obtained from light beer to justify diverting resources from production of beer and ale?
A. At least $2(\$ 1)+5(\$ 2)+24(\$ 0)=\$ 12 /$ barrel.

Modeling the maxflow problem as a linear program
Variables. $\mathrm{X}_{\mathrm{vw}}=$ flow on edge $\mathrm{v} \rightarrow \mathrm{w}$. Constraints. Capacity and flow conservation. Objective function. Net flow into t. Dual?

Shortest path as a linear program?
Maximize $d(t)$ subject to
(1) $d(s)=0$
(2) For each edge $u \rightarrow v, d(v)-d(u) \leq w(u \rightarrow v)$

Maximum cardinality bipartite matching problem

Input. Bipartite graph.
Goal. Find a matching of maximum cardinality. set of edges with no vertex appearing twice

Interpretation. Mutual preference constraints.

- People to jobs.
- Students to writing seminars.

Alice Adobe, Apple, Google
Bob Adobe, Apple, Yahoo
Carol Google, IBM, Sun
Dave Adobe, Apple
Eliza IBM, Sun, Yahoo
Frank Google, Sun, Yahoo

Adobe Alice, Bob, Dave
Apple Alice, Bob, Dave
Google Alice, Carol, Frank
IBM Carol, Eliza
Sun Carol, Eliza, Frank
Yahoo Bob, Eliza, Frank

Maximum cardinality bipartite matching problem

LP formulation. One variable per pair.
Interpretation. $\mathrm{x}_{\mathrm{ij}}=1$ if person i assigned to job j .

maximize

$$
\begin{gathered}
X_{A 0}+X_{A 1}+X_{A 2}+X_{B 0}+X_{B 1}+X_{B 5}+X_{C 2}+X_{C 3}+X_{C 4} \\
+X_{D 0}+X_{D 1}+X_{E 3}+X_{E 4}+X_{E 5}+X_{F 2}+X_{F 4}+X_{F 5}
\end{gathered}
$$

at most one job per person	at most one person per job		
subject	$X_{A 0}+X_{A 1}+X_{A 2}$	≤ 1	$X_{A 0}+X_{B 0}+X_{D 0}$
to the	$X_{B 0}+X_{B 1}+X_{B 5}$	≤ 1	$X_{A 1}+X_{B 1}+X_{D 1}$
constraints	$X_{C 2}+X_{C 3}+X_{C 4}$	≤ 1	$X_{A 2}+X_{C 2}+X_{F 2}$
	$X_{D 0}+X_{D 1}$	≤ 1	$X_{C 3}+X_{E 3}$
	$X_{E 3}+X_{E 4}+X_{E 5}$	≤ 1	$X_{C 4}+X_{E 4}+X_{F 4}$
	$X_{F 2}+X_{F 4}+X_{F 5}$	≤ 1	$X_{B 5}+X_{E 5}+X_{F 5}$

Theorem. [Birkhoff 1946, von Neumann 1953]
All extreme points of the above polyhedron have integer (0 or 1) coordinates.
Corollary. Can solve matching problem by solving LP. ఒ not usually so lucky!

Connection to game theory

- Zero-sum games: games where total payoff is zero.
- Typically, best strategies are mixed: probability distributions.
- Knowing the opponent's strategy gives you an advantage.

Connection to game theory

- Zero-sum games: games where total payoff is zero.
- Typically, best strategies are mixed: probability distributions.
- Knowing the opponent's strategy gives you an advantage.
- Or does it?

Expected
payoff
$+1 / 4$

Looking for the best strategy

- Variables $R, S, P \geq 0$
- Constraint: $\mathrm{R}+\mathrm{S}+\mathrm{P}=1$
- Minimize: $\max (S-P, P-R, R-S)$
- Not an LP?
- Easily becomes one!
- Minimize V
- Additional constraints:
- $V \geq$ S-P
- $V \geq P-R$
- $\mathrm{V} \geq \mathrm{R}$ - S

Solution: $\mathrm{R}^{*}=\mathrm{S}^{*}=\mathrm{P}^{*}=\frac{1}{3}$ V* $=0$

R
$0 / 0$
$-1 /-1$

- Knowing opponent's distribution is not helpful in zero-sum games!
- If for each distribution of opponent's moves I have a strategy that achieves a payoff V, then there is a distribution p^{*} of my strategies that achieves payoff at least V for all moves of the opponent.
- I can guarantee myself a payoff of V .
- Let V* be the highest payoff I can guarantee myself.

Proof via LP duality!

- Claim: opponent can guarantee itself a payoff of $-\mathbf{V}^{*}$.
- If not, then for each strategy of the opponent, I have a strategy that pays opponent less than - V^{*} (and therefore pays me more than V^{*})
- Then I must have one strategy that pays me more than V^{*} by the Minimax Theorem.
- There is a pair of strategies that guarantees the best possible ($\mathrm{V}^{*},-\mathrm{V}^{*}$) payoff - called an equilibrium. V^{*} in this case is the value of the game.
- Powerful generic tool for obtaining efficient algorithms.
- Typically not as good as purpose-designed algorithms (though this might change).
- Duality is an important general concept.
- Extended to convex optimization: optimize over a convex domain that is not necessarily a polytope
- In practice: a testing ground for non-convex optimization which is important in Machine Learning and other areas
- Major limitation: only works over continuous variables!
- Integer Programming (LP with integer variables) is NP-complete.
- Sometimes: lucky, as with matchings
- More often: solve LP then round solution - a major area of research in approximation algorithms

