Class Meeting #18
COS 226 — Spring 2018

Mark Braverman

(based in part on slides by Kevin Wayne)

Dynamic programming

A general algorithmic paradigm

The go-to solution for problems with
natural subproblems.

Typically, running time polynomial but not
linear (e.g Bellman-Ford is O(E V)).

Most commonly used method for tractable
combinatorial problems.

Useful in interviews.

Dynamic programming blueprint

* Find good subproblems

« Come up with a recursive solution
(recurrence relation)

« Use memorization to avoid running time
blowup.

Warmup: Fibonacci numbers

F(0)=1

F(1)=1

F(n)=F(n-1)+F(n-2) for n>=2

Compute F(n)

Naive solution

long F(long n) {
If (n==0)||(n==1)) return 1,
return F(n-1)+F(n-2);

Running time?

Naive solution

long F(long n) {
If (n==0)||(n==1)) return 1,
return F(n-1)+F(n-2);

}

T(n) =T(n-1)+T(n-2)+1
T(n) ~ F(n) ~ ¢", ¢ = 2%
Can we do better?

~ 1.62 ®

Replace recursion with memorization!

long F(long n) {
If (n==0)||(n==1)) return 1;
return F(n-1)+F(n-2); }

long Fmem(long n) {
long [] ans = new long[n+1];
ans[0]=1; ans[1]=1,
for (int i=2; i<=n; i++)

ans[i]=ans[i-1]+ansJi-2];

return ans[nj;

Replace recursion with memorization!

long Fmem(long n) {
long [] ans = new long[n+1];
ans[0]=1; ans[1]=1;
for (int I=2; I<=n; I++)

ans[i]J=ansJi-1]+ansJi-2];

return ans[nj; }

Running time?

O(n)

Can do even better?

Yes, can only do O(log n) multiplications.

HOUSE COLORING PROBLEM

Goal. Paint a row of n houses red, green, or blue so
that

No two adjacent houses have the same color.

Minimize total cost, where cost(i, color) is cost to paint 1 given color.

C
7
9
4

cost to paint house i the given color

NAIVE SOLUTION

Try coloring the last house on the block in all three possible
colors.

C (n) = the min cost of coloring the block so that the last house
gets color C.

B(n) = cost(n,B) + min(G(n—1),R(n — 1))
Reduction to a smaller subproblem

Subproblem = paining the first i houses, with the last house
having a prescribed color.

Can solve those and memorize the answer.

HOUSE COLORING PROBLEM

Subproblems.
R[i]

= min cost to paint houses 1, ..., 1 with 1 red.
G[1] = min cost to paint houses 1, ..., 1 with 1 green.

B[i] = min cost to paint houses 1, ..., 1 with 1 blue.

Optimal cost = min { R[n], G[n], B[n] }.
Recurrence equations:

R[i+ 1] = cost(i+1,red) + min { B[i], G[i] }
Gli+ 1] = cost(i+1, green) + min { R[i], B[i] }
Bli+ 1] = cost(i+1, blue) + min { R[i], G[i] }
R[0]=G[0]=B[0]=0

Running time. O(n).

HOUSE COLORING PROBLEM

HOUSE COLORING PROBLEM

HOUSE COLORING PROBLEM

ASIDE: CAN FORMULATE AS A SHORTEST PATH PROBLEM

\/ \/

‘ 0*0*

/\ /\ /\

'.' .'..

ASIDE: CAN FORMULATE AS A SHORTEST PATH PROBLEM

Goal: shortest path fromSto T

ASIDE: CAN FORMULATE AS A SHORTEST PATH PROBLEM

ASIDE: CAN FORMULATE AS A SHORTEST PATH PROBLEM

Dynamic programming blueprint

* Find good subproblems

« Come up with a recursive solution

« Use memorization to avoid running time
blowup.

« Key gquestion: What are the
subproblems?

COIN CHANGING

Problem. Given n coin denominations { ci, c2, ...,cx } and a
target value ¥, find the fewest coins needed to make change

for V' (or report impossible).

Recall. Greedy cashier’s algorithm is optimal for U.S. coin
denominations, but not for arbitrary coin denominations.

Ex. {1, 10, 21, 34, 70, 100, 350, 1295, 1500 }.
Optimal. 140¢ =70 + 70.

AL
o 10
Ush

COIN CHANGING bA

Def. OPT(v) = min number of coins to
make change for v.

Goal. OPT(V).

Multiway choice. To compute OPT(v),
Select a coin of denomination ci for some 1.
Select fewest coins to make change for v — ci.

Recurrence:
00 ifv<O
OPT(v) = < 0 ifv=0
max { 1+ OPT(v—c¢;)} otherwise

1<i<n

Running time. O(n V).

COIN CHANGING PROBLEM

Once again, can be formulated as shortest
path on an appropriately chosen graph.

COIN CHANGING PROBLEM

Once again, can be formulated as shortest
path on an appropriately chosen graph.

All edge weights = 1

Smallest number of coins to produce V = shortest path
from O to V.

COIN CHANGING PROBLEM

Once again, can be formulated as shortest
path on an appropriately chosen graph.

All edge weights = 1

Smallest number of coins to produce V = shortest path
from O to V.

Is time ~n V “efficient”?

Back to graph problems

Bellman-Ford solves the shortest path
problem.

Calculates D (s, v): the distance from a
given source s to all vertices v.

Solution idea: proceed in rounds; in each
round “relax” edges from each vertex in

seguence.
What is produced after k such relaxations?

Bellman-Ford example

Relax order ABCDEFGH
Vertex distances after 3 rounds?

Round 1
A

Relax order ABCDEFGH
D->C: D->H

Round 2
A

Relax orderr ABCDEFGH
C->B; C->G; C->H

Round 2
A

Relax orderr ABCDEFGH
C->B; C->G; C->H; D hasn’t changed

Round 2

Relax orderr ABCDEFGH
C->B:; C->G; C->H; G->F; G->H

Round 2

Relax orderr ABCDEFGH
C->B:; C->G; C->H; G->F; G->H

Round 3

Relax order ABCDEFGH
B->A; B->F; B->G

Round 3
A
69

Relax order ABCDEFGH
B->A; B->F; B->G

Round 3
A
69

Relax orderr ABCDEFGH
B->A; B->F; B->G; C, D haven’t changed

Round 3

Relax order ABCDEFGH
B->A: B->F: B->G: F->E: F->A

Round 3

Relax order ABCDEFGH
B->A: B->F: B->G: F->E: F->A

Round 3

Relax orderr ABCDEFGH
B->A: B->F; B->G; F->E; F->A; G->F; G->H

Round 3

Relax orderr ABCDEFGH
B->A: B->F; B->G; F->E; F->A; G->F; G->H

Back to graph problems

Calculates D (s, v): the distance from a given
source s to all vertices v.

Solution idea: proceed in rounds; in each
round “relax” edges from each vertex in
sequence. Assume no negative cycles.
What is produced after k such relaxations?
BF (s,v, k) < the length of the shortest path
from s to v with at most k hops [why not =7?]
D(s,v) = BF(s,v,V)

Bellman-Ford as DP

« Subproblem: paths with at most k hops.
« Relationship:

D(s,v,0) = {O if s=v

oo oterwise

D(s,v,k+1) =min(D(s,u, k) + c(u - v))
u-—-v

* Note: standard implementation does not
compute D(s, v, k), but something
potentially smaller.

All-pairs shortest path

Given a digraph G with no negative cycles,
want to compute a table D (u, v) of all
shortest distances.

D(u,v, k) =7

The hard part is coming up with the “right”
subproblems!

Number of steps: possible, but less
efficient.

Floyd—Warshall algorithm

* D(u,v, k) = the shortest path where the only
Intermediate vertices allowed are vertices
{1, ..., k} (assume the vertices are {1, ..., n})

 D(u,v) =D(u,v,n)

« D(u,v,0) =c(u - v)

e D(u,v,k+1)

= min(D(u,v,k),D(u,k+1,k) + D(k + 1,v,k))
* Running time?
« 0(V3) (compared to O(VE) for BF).

Subproblem by # of hops
L(u,v, k) = the shortest path with at most k
hops
L(u,v) = L(u,v,n) (in fact, L(u,v,n — 1))
L(u,v,1) = c(u - v)

Llu,v,k+1)

= mv\i]n(D(u, w, k) +c(w - v))
Running time?
O(V E) per update, V updates, (V4E) total.

(compared to O(VE) for BF: same as running
it V times).

Better update?

L(u,v, k) = the shortest path with at most k
hops

L(u,v) = L(u,v,n)

L(u,v,1) =c(u - v)

L(u,v,2k) = mv\i,n(D (u,w, k) + D(w,v,k))
Cost per update: 0(V?3)

Number of updates: O(logV)

Total cost 0(V3logV) (compared to 0(V3)
for Floyd—Warshall).

Dynamic programming: summary

* Find good subproblems

« Come up with a recursive solution
(recurrence relation)

« Use memorization to avoid running time
blowup.

« Most important: the right subproblems

« Secondary: better update and storage
strategies

