Princeton University

Computer Science 217: Introduction to Programming Systems

The Design of C

- "C is quirky, flawed, and an enormous success. While accidents of history surely helped, it evidently satisfied a need for a system implementation language efficient enough to displace assembly language, yet sufficiently abstract and fluent to describe algorithms and interactions in a wide variety of environments."
- -- Dennis Ritchie

Goals of this Lecture

Help you learn about:

- The decisions that were made by the designers* of C
- Why they made those decisions
- ... and thereby...
- The fundamentals of C

Why?

- Learning the design rationale of the C language provides a richer understanding of C itself
- A power programmer knows both the programming language and its design rationale

* Dennis Ritchie & members of standardization committees

Goals of C

Designers wanted C to:	But also:
Support system programming	Support application programming
Be low-level	Be portable
Be easy for people to handle	Be easy for computers to handle

- Conflicting goals on multiple dimensions!
- Result: different design decisions than Java

Operators

Issue: What kinds of operators should C have?

Thought process

- Should handle typical operations
- Should handle bit-level programming ("bit twiddling")
- Should provide a mechanism for converting from one type to another

Operators

Decisions

- Provide typical arithmetic operators: + * / %
- Provide typical relational operators: == != < <= > >=
 - Each evaluates to $0 \Rightarrow FALSE$, $1 \Rightarrow TRUE$
- Provide typical logical operators: ! && ||
 - Each interprets $0 \Rightarrow FALSE$, non- $0 \Rightarrow TRUE$
 - Each evaluates to $0 \Rightarrow FALSE$, $1 \Rightarrow TRUE$
- Provide bitwise operators: ~ & | ^ >> <
- Provide a cast operator: (type)

Logical vs. Bitwise Ops

Logical AND (&&) vs. bitwise AND (&)

• 2 (TRUE) && 1 (TRUE) => 1 (TRUE)

Decimal	Binary
2	0000000 0000000 0000000 0000010
&& 1	00000000 00000000 00000000 0000001
1	00000000 00000000 00000000 0000001

• 2 (TRUE) & 1 (TRUE) => 0 (FALSE)

Decimal	Binary			
2	00000000	00000000	00000000	0000010
& 1	00000000	0000000	0000000	0000001
0	0000000	0000000	0000000	0000000

Implication:

- Use logical AND to control flow of logic
- Use bitwise AND only when doing bit-level manipulation
- Same for OR and NOT

Assignment Operator

Issue: What about assignment?

Thought process

- Must have a way to assign a value to a variable
- Many high-level languages provide an assignment statement
- Would be more expressive to define an assignment operator
 - Performs assignment, and then evaluates to the assigned value
 - Allows assignment to appear within larger expressions

Decisions

- Provide assignment operator: =
- Define assignment operator so it changes the value of a variable, and also evaluates to that value

Assignment Operator Examples


```
i = 0;
   /* Side effect: assign 0 to i.
      Evaluate to 0.
j = i = 0; /* Assignment op has R to L associativity */
   /* Side effect: assign 0 to i.
      Evaluate to 0.
      Side effect: assign 0 to j.
      Evaluate to 0. */
while ((i = getchar()) != EOF) ...
   /* Read a character.
      Side effect: assign that character to i.
      Evaluate to that character.
      Compare that character to EOF.
      Evaluate to 0 (FALSE) or 1 (TRUE). */
```

Special-Purpose Assignment

Issue: Should C provide tailored assignment operators?

Thought process

- The construct $\mathbf{a} = \mathbf{b} + \mathbf{c}$ is flexible
- The construct i = i + c is somewhat common
- The construct i = i + 1 is very common
- Special-purpose operators make code more expressive
 - Might reduce some errors
 - May complicate the language and compiler

Decisions

- Introduce += operator to do things like i += c
- Extend to -= *= /= ~= &= |= ^= <<= >>=
- Special-case increment and decrement: i++ i--
- Provide both pre- and post-inc/dec: $\mathbf{x} = ++\mathbf{i}; \mathbf{y} = \mathbf{i}++\mathbf{j}$

iClicker Question

Q: What are i and j set to in the following code?

i	= 5;
j	= i++;
j	+= ++i;

A. 5, 7

B. 7, 5

C. 7, 11

D. 7, 12

E. 7, 13

sizeof Operator

Issue: How to determine the sizes of data?

Thought process

- The sizes of most primitive types are un- or under-specified
- Provide a way to find size of a given variable programmatically

Decisions

- Provide a sizeof operator
 - Applied at compile-time
 - Operand can be a data type
 - Operand can be an expression, from which the compiler infers a data type

Examples, on courselab using gcc217

- sizeof(int) evaluates to 4
- **sizeof(i)** evaluates to 4 (where **i** is a variable of type **int**)

iClicker Question

Q: What is the value of the following **sizeof** expression on the courselab machines?

int i = 1;
sizeof(i + 2L)

- A. 3
- B. 4
- **C.** 8
- D. 12

E. error

Other Operators

Issue: What other operators should C have?

Decisions

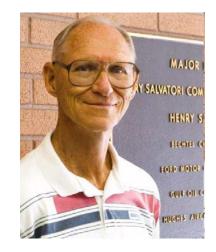
- Function call operator
 - Should mimic the familiar mathematical notation
 - function(param1, param2, ...)
- Conditional operator: ?:
 - The only ternary operator: "inline if statement"
 - Example: (i < j) ? i : j evaluates to min of i and j
 - See King book for details
- Sequence operator: ,
 - See King book
- Pointer-related operators: & *
 - Described later in the course
- Structure-related operators (. ->)
 - Described later in the course

Operators Summary: C vs. Java

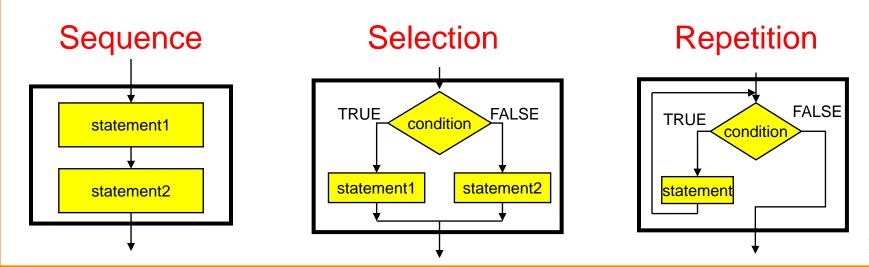
Java only

- >>>
- new
- instanceof

C only


- ->
- *
- •
- sizeof

- right shift with zero fill
- create an object
- is left operand an object of class right operand?
 - structure member select
 - dereference
 - address of
 - sequence
 - compile-time size of


Control Statements

- Issue: What control statements should C provide?
- Thought process
 - **Boehm** and **Jacopini** proved that any algorithm can be expressed as the nesting of only 3 control structures:

Barry Boehm

Control Statements (cont.)

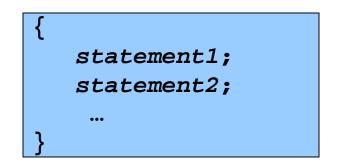
• Thought Process (cont.)

• **Dijkstra** argued that any algorithm **should** be expressed using only those control structures (GOTO Statement Considered Harmful paper)

Decisions

- Provide statements to implement those 3 control structures
- For convenience, provide a few extras

Edsgar Dijkstra


Sequence Statement

Issue: How should C implement sequence?

Decision

• Compound statement, alias block

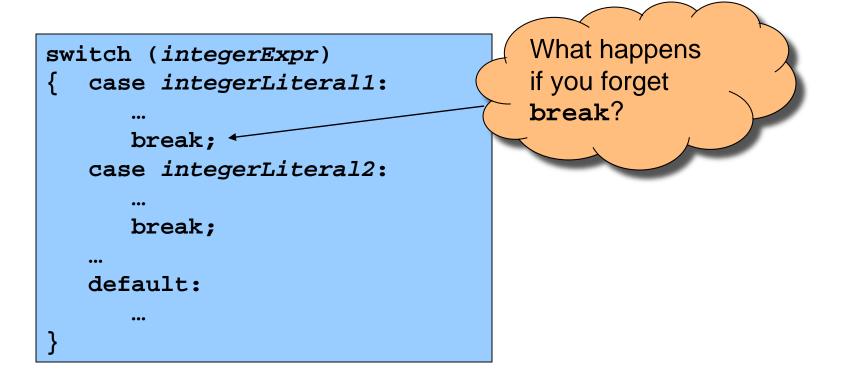
Selection Statements

Issue: How should C implement selection?

Decisions

• if statement, for one-path, two-path decisions

if (*expr*) statement1;


if (expr)	
stateme	nt1;
else	
<pre>statement2;</pre>	

Selection Statements

Decisions (cont.)

• **switch** and **break** statements, for multi-path decisions on a single *integerExpr*

Repetition Statements

Issue: How should C implement repetition?

Decisions

• while statement; test at leading edge

while (*expr*) *statement*;

• for statement; test at leading edge, increment at trailing edge

for (initialExpr; testExpr; incrementExpr)
 statement;

• do...while statement; test at trailing edge

Other Control Statements

Issue: What other control statements should C provide?

Decisions

- break statement (revisited)
 - Breaks out of closest enclosing switch or repetition statement
- continue statement
 - Skips remainder of current loop iteration
 - Continues with next loop iteration
 - When used within for, still executes *incrementExpr*
- goto statement grudgingly provided
 - Jump to specified label

Issue: Should C require variable declarations?

Thought process:

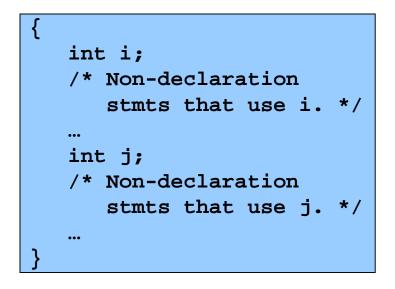
- Declaring variables allows compiler to check spelling
- Declaring variables allows compiler to allocate memory more efficiently

Declaring Variables

Decisions:

- Require variable declarations
- Provide declaration statement
- Programmer specifies type of variable (and other attributes too)

Examples

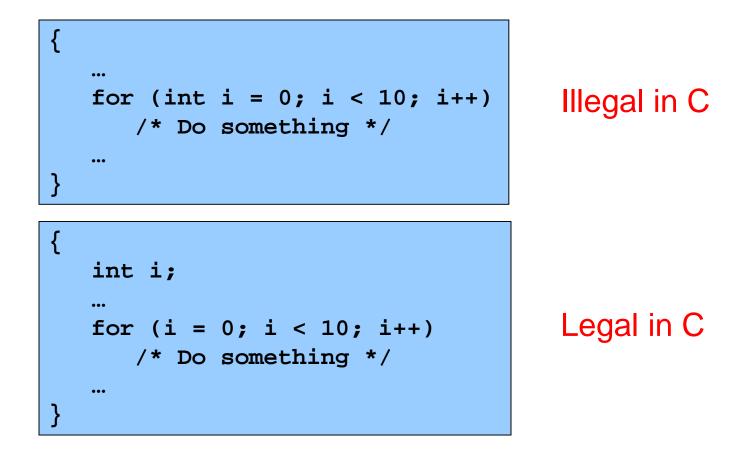

- int i;
- int i, j;
- int i = 5;
- const int i = 5; /* value of i cannot change */
- static int i; /* covered later in course */
- extern int i; /* covered later in course */

Declaring Variables

Decisions (cont.):

• Unlike Java, declaration statements *must* appear before any other kind of statement in compound statement

Illegal in C


int i; int j; /* Non-declaration stmts that use i. */ /* Non-declaration stmts that use j. */

Legal in C

Repetition Statements

Decisions (cont.)

• Similarly, cannot declare loop control variable in for statement

Statements Summary: C vs. Java

Java only

- Declarations anywhere within block
- Declare immutable variables with final
- Conditionals of type boolean
- "Labeled" break and continue
- No goto

C only

- Declarations only at beginning block
- Declare immutable variables with const
- Conditionals of any type (checked for zero / nonzero)
- No "labeled" break and continue
- goto provided (but don't use it)

iClicker Question

Q: What does the following code print?

```
int i = 1;
switch (i++) {
    case 1: printf("%d", ++i);
    case 2: printf("%d", i++);
}
```

A. 1

B. 2

C. 3

D. 22

E. 33

I/O Facilities

Issue: Should C provide I/O facilities?

Thought process

- Unix provides the file abstraction
 - A file is a sequence of characters with an indication of the current position
- Unix provides 3 standard files
 - Standard input, standard output, standard error
- C should be able to use those files, and others
- I/O facilities are complex
- C should be small/simple

I/O Facilities

Decisions

- Do not provide I/O facilities in the language
- Instead provide I/O facilities in standard library
 - Constant: EOF
 - Data type: FILE (described later in course)
 - Variables: stdin, stdout, and stderr
 - Functions: ...

Reading Characters

Issue: What functions should C provide for reading characters from standard input?

Thought process

- Need function to read a single character from stdin
- Function must have a way to indicate failure, that is, to indicate that no characters remain

Decisions

- Provide getchar() function
- Make return type of getchar() wider than char
 - Make it **int**; that's the natural word size
- Define getchar() to return EOF (a special non-character int) to indicate failure

Note

• There is no such thing as "the EOF character"

Writing Characters

Issue: What functions should C provide for writing a character to standard output?

Thought process

Need function to write a single character to stdout

Decisions

- Provide a putchar() function
- Define putchar() to accept one parameter
 - For symmetry with getchar(), parameter should be an int

Reading Other Data Types

Issue: What functions should C provide for reading data of other primitive types?

Thought process

- Must convert external form (sequence of character codes) to internal form
- Could provide getshort(), getint(), getfloat(), etc.
- Could provide one parameterized function to read any primitive type of data

Decisions

- Provide scanf() function
- Can read any primitive type of data
- First parameter is a format string containing conversion specifications

See King book for details

Writing Other Data Types

Issue: What functions should C provide for writing data of other primitive types?

Thought process

- Must convert internal form to external form (sequence of character codes)
- Could provide putshort(), putint(), putfloat(), etc.
- Could provide one parameterized function to write any primitive type of data

Decisions

- Provide printf() function
- Can write any primitive type of data
- First parameter is a format string containing conversion specifications

See King book for details

Other I/O Facilities

Issue: What other I/O functions should C provide?

Decisions

- fopen(): Open a stream
- fclose(): Close a stream
- fgetc(): Read a character from specified stream
- fputc(): Write a character to specified stream
- fgets(): Read a line/string from specified stream
- fputs(): Write a line/string to specified stream
- fscanf(): Read data from specified stream
- fprintf(): Write data to specified stream

Described in King book, and later in the course after covering files, arrays, and strings

Summary

C design decisions and the goals that affected them

- Data types (last time)
- Operators
- Statements
- I/O facilities

Knowing the design goals and how they affected the design decisions can yield a rich understanding of C

Cast operator has multiple meanings:

(1) Cast between integer type and floating point type:

- Compiler generates code
- At run-time, code performs conversion

i = (int)f

i 111111111111111111111100101 -27

(2) Cast between floating point types of different sizes:

- Compiler generates code
- At run-time, code performs conversion

d = (double)f

d 1100000001110110100000000000 -27.375

(3) Cast between integer types of different sizes:

- Compiler generates code
- At run-time, code performs conversion

c = (char)i

2

(4) Cast between integer types of same size:

- Compiler generates no code
- Compiler views given bit-pattern in a different way

u = (unsigned int)i