COS 126 General Computer Science Fall 2017

Programming Exam 1

Instructions. This exam has two parts and an optional extra credit. You have 50 min-
utes. The exam is open course materials, which includes the course textbook, the companion
booksite, the course website, your course notes, and code you wrote for the course. Access-
ing other information or communicating with a non-staff member (such as via email, text,
Facebook, Piazza, phone, or Snapchat) is prohibited.

Setup. You may download the necessary files from the Class Meetings page now.

Submission. Submit your solution via the link on the Class Meetings page. Click the Check
All Submitted Files button to verify your submission. You may submit multiple times.

Grading. Your program will be graded for correctness, clarity (including comments), design,
and efficiency. You will receive partial credit for a program that correctly implements some
of the required functionality. You will receive a substantial penalty if your program does not
compile or if you do not follow the prescribed input/output specifications.

Discussing this exam. Discussing or communicating the contents of this exam before
solutions have been posted is a violation of the Honor Code.

This exam. You must turn in this exam. Print your name, NetID, precept, and the room
in which you are taking the exam in the space below. Also, write and sign the Honor Code
pledge. You may fill in this information now.

Name:
NetlID:

Exam Room:

Precept:

“I pledge my honor that I will not violate the Honor Code during this examination.”

Signature



Problem 1: Plot Prices. (20 Points) Write a program Prices. java that reads, prints,
and plots stock prices. Your program must handle all inputs that conform to the input
specification. We will not test non-conforming inputs. See Reminders and Tips on p. 4.

Input Specification. The input from standard input consists of a positive integer n on a
line by itself, followed by a sequence of n lines, each representing one day of historical stock
trading information. Each line contains a date string and four prices (doubles) for that day’s
trading. The four prices are the open (the price of the first trade that day), the high (the
highest trade price for that day), the low (the lowest trade price for that day), and the close
(the price of the last trade of the day).

% more TSLA-10.txt

10 «—n

2013-01-02 35.00 35.45 34.71 35.36

2013-01-03 35.18 35.45 34.75 34.77

2013-01-04 34.80 34.80 33.92 34.40

2013-01-07 34.80 34.80 33.90 34.34

2013-01-08 34.50 34.50 33.11 33.68

2013-01-09 34.01 34.19 33.40 33.64

2013-01-10 33.87 33.99 33.38 33.53

2013-01-11 34.04 34.04 32.11 32.91

2013-01-14 33.08 33.38 32.85 33.26

2013-01-15 33.11 34.25 33.08 33.90
date open high Ilow close

Two data files, TSLA.txt (Tesla Inc. stock prices for 2013) and TSLA-10.txt (Tesla Inc.
stock prices for the first 10 days of 2013), are available via the Class Meetings page.

Required Program Steps.

1. Read n, the number of days, from standard input.

2. Read, also from standard input, the date and the open, high, low, and close prices for
each day into five parallel arrays.

3. Call StockPlot.plot to make a pretty plot.

4. Print n and the array contents to standard output.

Standard Output Specification. The output should match the input exactly. Use %.2f
in the StdOut.printf format string for the doubles. Do not print any other output.

Calling StockPlot.plot. Plot the stock prices using the StockPlot.plot function pro-
vided to you in the StockPlot. java file available from the Class Meetings page. The function
StockPlot.plot takes four array arguments of the same size: open, high, low, and close.
The plot generated is called a “candlestick plot” with the range between open and close in
red and the remainder of the range between high and low in black.

Submission. Submit Prices. java via the link on the Class Meetings page. Tip: Success-
fully complete Problem 1 before moving on. Problem 1 is worth the most points.



Problem 2. Simple Moving Average (10 Points) Write MovingAverage3.java, a
program that reads stock prices, computes the 3-day simple moving average of the close
prices, plots the prices and moving average, and prints the prices and moving average to
standard out. Your program must handle all inputs that conform to the input specification.
We will not test non-conforming inputs.

Computing the 3-day Simple Moving Average In finance, a moving average is a
very popular stock price analysis indicator. It provides a smooth trend line, removing the
distractions of higher frequency price fluctuations. In this problem, you will compute the
simple moving average of the closing stock price. The simple moving average on day 7 is the
average of the three most recent close prices, including the close price on day i. You can
compute the average for day ¢ by summing the close price for days i, ¢ — 1, and ¢ — 2 and
dividing by 3. Do not compute the moving average for i = 0 and i = 1.

Input specification. The input is the same as Problem 1. The input will have at least
three days of trading history.

Standard output specification. The output should match the input exactly except with
the addition of a new column containing the 3-day simple moving average starting on the
3rd day. (The 3-day moving average has no meaning on the first two days.) Do not print
any other output to standard output.

% java-introcs PricesAndMovingAverage < TSLA-10.txt
10 «—n
2013-01-02 35.00 35.45 34.71 35.36
2013-01-03 35.18 35.45 34.75 34.77
2013-01-04 34.80 34.80 33.92 34.40 34.84
2013-01-07 34.80 34.80 33.90 34.34 34.50
2013-01-08 34.50 34.50 33.11 33.68 34.14
2013-01-09 34.01 34.19 33.40 33.64 33.89
2013-01-10 33.87 33.99 33.38 33.53 33.62
2013-01-11 34.04 34.04 32.11 32.91 33.36
2013-01-14 33.08 33.38 32.85 33.26 33.23
2013-01-15 33.11 34.25 33.08 33.90 33.36
date open high low close ma

Plotting. The plotting will be performed by StockPlot.plot, the same function used in
Problem 1. To plot the moving average, pass six arguments instead of four. These arguments
are open, high low, close, ma (the moving average), and days. The first five arguments
passed must be double arrays of the same size. The last argument, days, an integer, expresses
the moving average number of days (3 in this case). StockPlot.plot will ignore the values
in ma for days less than days (index 0 and 1 in this case).

Submission. Submit MovingAverage3.java via the link on the Class Meetings page.



Reminders and Tips

e Be sure to compile your Java files with javac-introcs.

e Be sure to also compile StockPlot.java with javac-introcs.

e Be sure to run your program with java-introcs.

e Tip: Save time on this exam by copying your code from one part to the next.

e Tip: Do not move to the next part until your submitted code passes all tests.

Sample Plot. java-introcs MovingAverage3 < TSLA-10.txt should produce this plot:

Optional Extra Credit. (2 Points) Write a program MovingAverageK. java that reads
stock prices, computes the K-day simple moving average of the close prices, plots the prices
and moving average, and prints the prices and moving average to standard out. K is an
integer argument on the command line. Your program must handle all inputs that conform
to the input specification. We will not test non-conforming inputs. The input will have at
least K days of trading history.

Output specification. The output printed should match the input exactly except with
the addition of the K-day moving average starting on the Kth day. (The K-day moving
average has no meaning on the first K-1 days.) Do not print any other output to standard
output. Plot using StockPlot.plot.

Submission. Submit MovingAverageK. java via the link on the Class Meetings page.



