
A DHT-based Infrastructure for Content-based Publish/Subscribe Services ∗

Xiaoyu Yang and Yiming Hu
Department of Electrical and Computer Engineering
University of Cincinnati, Cincinnati, OH 45221, USA

{yangxu,yhu}@ececs.uc.edu

Abstract

Publish/Subscribe model has become a prevalent
paradigm for building distributed event delivering systems.
Content-based publish/subscribe allows high expresses in
subscriptions and thus is more appropriate for content
dissemination. However, the scalability has remained a
challenge in the design of distributed content-based pub-
lish/subscribe systems due to the expensive matching and
delivering cost of content-based events. In this paper we
propose an infrastructure built on top of distributed hash
table for efficient content-based data distribution. Based
on efficient subscription installation, event publication and
event delivery mechanisms, the proposed infrastructure can
simultaneously support any numbers of pub/sub schemas
with different number of attributes. There are three key
features in our design: (1) a locality-preserving hashing
mechanism which partitions and maps the content space to
nodes. Subscriptions and events are mapped to the corre-
sponding node for efficiently matching; (2) an efficient event
delivery algorithm which exploits the embedded trees in the
underlying DHT to deliver events to the corresponding sub-
scribers; (3) light-weighted load balancing mechanisms to
adjust the load among peers and ensure that no peer is un-
duly loaded.

1. Introduction

The publish/subscribe (pub/sub) system has become a
prevalent paradigm for delivering data/events from publish-
ers (data/event producers) to subscribers (data/event con-
sumers) across large-scale distributed networks in a decou-
pled fashion. In such a system, subscribers register their in-
terests to the system using a set of subscriptions. The pub-
lishers can be completely unaware of the subscribers and
simply submit information to the system using a set of pub-
lications. Once receiving a publication, the system matches

∗This research was supported in part by the National Science Founda-
tion under grant CCF-0541103.

it to the subscriptions and then delivers it to the interested
subscribers. Traditionally, the designs of pub/sub systems
can be typically classified into two classes: topic-based and
content-based. Topic-based pub/sub systems need to pre-
define a set of topics. A subscriber registers a set of topics
in which it is interested and then will be notified of all of
the events associated with these topics. Relatively, content-
based pub/sub systems allow users to flexibly specify com-
plex interests with a set of predicates over the content of
the publication, and thus are more appropriate for content
dissemination.
Pub/sub systems can be either centralized or distributed.

The centralized solution lacks scalability and suffers from
single point of failure. Hence, the distributed solutions
are more practical and preferred. The distributed hash ta-
bles [18, 16, 22, 15] paradigms are appropriate for build-
ing large-scale distributed applications due to their scalabil-
ity, fault-tolerance and self-organization. As a result, many
pub/sub systems [11, 6, 21, 20, 19, 13, 14, 1] have been
built on top of DHTs. Peers in the system cooperate in
storing subscriptions and matching & delivering events in a
fully distributed manner. The main challenge in the imple-
mentation of DHT-based pub/sub systems involves: (1) the
design of an effective subscription installation scheme that
maps subscriptions onto peers in the system; (2) the design
of an efficient event matching and delivery algorithm which
distributedly filters and delivers events to the corresponding
subscribers; (3) the design of load-balancing mechanism to
ensure a uniform distribution of load among peers.
In this paper we propose a distributed architecture, built

upon Chord [18], for content-based publish/subscribe ser-
vices. Working as a scalable platform, the proposed infras-
tructure can simultaneously support many pub/sub schemas.
For each pub/sub service, it employs a locality-preserving
hashing mechanism to partition and map the content space
to nodes. Subscriptions are mapped to one node or nodes
that are close together in the overlay network, and events
are delivered to the corresponding nodes for matching the
subscriptions. Such a design can make the subscription
installation and event publication efficient. Our architec-

ture does not need to maintain dissemination trees to de-
liver events. Instead, it leverages the embedded trees in
the underlying DHT for event delivery. Exploring DHT
links can eliminate the overhead of maintaining additional
in-network data structures for each pub/sub schema. More-
over, the maintenance of DHT links can be piggybacked
onto the event delivery message, so as to reduce the mainte-
nance cost. To deal with load balancing issues, we develop
light-weight mechanisms to statically or dynamically adjust
the load among peers, and ensure that no peer is unduly
loaded.
The rest of this paper is structured as follows. Section 2

gives a survey of related work. Section 3 describes the key
features of our design. Section 4 discusses load balancing
issues. In section 5, experiments and results are presented
and discussed. Finally, section 6 is the conclusion and fu-
ture work.

2. Related work

Compared to the topic-based pub/sub systems (e.g.
ISIS [4] and IBus [12]), content-based pub/sub systems are
preferable since they give subscribers the flexibility to spec-
ify more complex interests with a set of predicates over the
entire content of the publication. The events whose content
satisfies all the specified predicates are delivered to the cor-
responding subscribers. As a result, subscriptions are more
expressive but the system is harder to implement. Many
content-based pub/sub systems are based on a spanning tree
of all brokers (e.g.SIENA [5],Gryphon [2]). However, such
a spanning tree is not feasible when the system involves a
large number of brokers that join and leave the system dy-
namically. In addition, the overhead on brokers is so high
that it may limit the system scalability and impose uneven
load among nodes.
Structured P2P systems, such as Chord [18], Pastry [16],

Tapestry [22], and CAN [15], use distributed hash table to
construct the overlay network and provide more efficient
lookups. Many attempts have been made to design a DHT-
based pub/sub system [20, 21, 19, 13, 6, 14, 17, 23, 11, 1].
Scribe [17] and Bayeux [23] are topic-based pub/sub sys-
tems built on top of Pastry and Tapestry respectively. They
can not directly support content-based pub/sub services.
Tam et al. [19] built a content-based pub/sub system from
Scribe. However, their system still suffers from some re-
strictions on the expression of subscriptions. Terpstra et
al. [20] presented a content-based pub/sub system on top
of Chord. In order to make the system function cor-
rectly, it needs to maintain the invariants for filters, which
is inefficient in case of frequent node join and departure.
Reach [13] and HOMED [6] are content-based pub/sub sys-
tems built on top of a P2P overlay, which maintain the
high-level semantic relationships. They have a load balanc-

ing problem since unevenly distributed subscriptions will
cause unevenly distributed nodes in the overlay identifiers
space. Triantafillou et al. [21] built a content-based pub/sub
system upon Chord. Content space for each attribute is
mapped onto the ring. Subscriptions are stored onto the
nodes whose identifiers lie in the corresponding range. The
main drawback of their system is that subscription installa-
tion/reinforcementwill involve a large number of nodes and
messages. Aekaterinidis et al. proposed PastryStrings [1]
on top of Pastry. Prefix string trees are maintained for con-
tent dissemination. The main limitation is that it could
not efficiently cope with numerical range. [21, 1] match
multi-attribute events through multiple processes on each
attributes, and the final matched list is calculated from the
results of the subprocesses. Such a method is very expen-
sive in distributed environment. Meghdoot [11] is based on
CAN. Considering the skewed distribution of real applica-
tions, it addresses the load balancing issue by zone splitting
and replication. The main limitation is that the overlay’s di-
mension is twice of the number of event attributes, thus it
can not effectively support multiple pub/sub services with
different numbers of attributes. [21, 1, 11] focus on how to
store the subscriptions and how to get the list of subscrip-
tions matched to an event. However, how to deliver events
to the matched subscribers is unexplored.

3. System design

In this section, we describe the design of our architec-
ture on top of Chord. It should be noted that the tech-
niques presented in this paper are applicable to other DHTs
such as Pastry and Tapestry. We first give a brief descrip-
tion of the content-based pub/sub model, and then describe
the locality-preserving hashing mechanism, followed by the
discussions on the subscriptions installation and events de-
livery mechanisms.

3.1. Publish/subscription model

As proposed by Fabret et al. [9], a pub/sub schema can
be described as: ={A1, A2, . . . , An}, where each Ai repre-
sents an attribute. Each attribute is defined by a name, a
type and a domain. An event is a set of equalities on all
attributes in schema . A subscription is a conjunction of
predicates on one or more attributes, where each predicate
specifies a constant value or a range for an attribute. A sub-
scription that needs to specify multiple predicates on the
same attribute can be divided into multiple subscriptions. If
a subscription does not specify any range over an attribute,
the boundary of the domain of this attribute is considered
as the interested range. Note that the prefix and suffix predi-
cates on string type attributes can be converted to numerical
ranges. An event e matches a subscription s if and only if

each predicate of s is satisfied by the value of corresponding
attribute contained in event e. Based on these assumptions
and definitions, Content space of each pub/sub schema can
be modeled as a multi-dimensional space, where each di-
mension represents an attribute. An event can be described
as a point in the space, while a subscription is defined as a
hypercuboid. An event matches a subscription if it is within
the corresponding hypercuboid of the subscription.

3.2. Locality-preserving hashing

A key component in our design is a locality-preserving
hashing (LPH for short) mechanism which partitions and
maps a multi-dimensional content space to the 1-d key
space. The mechanism is based on the technique of k-d
tree [3]. The whole content space is partitioned into 2m

equal sized hypercuboids (m is the number of bits in the
key identifiers of Chord), each of which is identified by a
key (am bits integer).
Consider a d-dimensional content space Ω, where each

dimension Ωi has a boundary described by an ordered pair
⟨Ωi.L, Ωi.H⟩. The d-dimensional cuboids are obtained by
dividing each dimension of Ω alternately, for totally m
times. The procedure satisfies the following two proper-
ties:
• After the i-th division, 1 ≤ i ≤ l, Ω is partitioned into

βi equal sized d-dimensional cuboids, where β is the
base of the key/node identifiers 1;

• The i-th division is performed on the j-th dimension,
where j = i mod d.

The key is defined as follows: on the i-th division, if a hy-
percuboid picks up the p-th divided range from low to high
on the splitting dimension, where 0 ≤ p ≤ β-1, the i-th
digit of the key is p (from the left, padded with zeros on
the left if the length is less than m). Figure 1 illustrates

Figure 1. An illustration of content space subdivision.
(base=2, dim=2,m=3)

the procedure of space subdivision and key generation on
a 2-dimensional content space. Algorithm 1 describes the
locality-preserving hash function. Given a point in the con-
tent space, it identifies the m-level hypercube which holds

1Generally, the base of key/node identifiers β=2b, where b=1, 2,

the content point and return the corresponding key as the
hash value.
Algorithm 1 LPH (ContentPoint e)
Require: {Ω: domain of the content space; d: the number of attributes

in the content space; β: base of the key identifier; m: the number of
digits in key identifier}

1: T ← Ω
2: key← 0
3: for i← 1 tom do
4: j ← i mod d
5: equally subdivide Tj into β ranges: r0, r1, . . . , rβ−1, from low to

high ordinally
6: identifies the range rp which holds ej
7: Tj ← rp
8: key← key × β + p
9: end for
10: return key

The Chord’s key-mapping mechanism is utilized to map
the hypercuboids onto nodes in the system, i.e. each hy-
percuboid is mapped onto the node which is the successor
(node whose identifier is equal to or immediately after the
key along the ring) of its key. The above space partition-
ing and mapping mechanism can map nearby data points in
the content space to one node or nodes close together in the
overlay network, which makes the subscription installation
and event publication efficient.

3.3. Subscription installation

In a pub/sub system, the subscription installation deals
with the issue of efficiently storing subscriptions in the net-
work. A user specifies his interest in particular events in the
form of subscription which can be defined as a hypercuboid
in the content space as discussed in section 3.1. Since the
locality-preserving hashing mechanism partitions and maps
the content space to nodes, a subscription s should be stored
on the nodes whose content space overlaps the range of s.
The major challenge in subscription installation is how to

refine and route a subscription to the nodes whose content
space overlaps the range of subscription. A naive approach
is to subdivide a subscription into many sub-subscriptions,
each of which is covered by only one of the 2m hyper-
cuboids, and route each sub-subscription to the correspond-
ing node. This method is obviously inefficient and will
cause high overhead especially when the range of a sub-
scription is large. Accordingly, we use a different way to
install subscriptions by progressively splitting and refining
a subscription along the propagation path.
We define prefix key and prefix length to assist the sub-

scription refining and routing. The prefix is the code (bit
string) of the smallest hypercuboid that can completely hold
the subscription region when the content space is recur-
sively partitioned. The prefix key is a m-bit identifier by
padding zeros to the right of prefix. The prefix length is
used to indicate the valid length of prefix in the prefix key.
As illustrated in figure 2(a), the rectangle 011 is the smallest
one that can completely hold the query region (the shaded

Figure 2. Subscription refinement and the prefix
area) of S when the content space is recursively partitioned
for three times. Thus the prefix for S is “011”. The pre-
fix key of S is “0110 . . .0”, with m bits totally. When a
subscription is issued, the initial prefix key is generated on
the subscribing node. Then the subscription, as well as the
prefix key, is sent to the subscription routing module for re-
finement and delivery.
Upon receiving a subscription S, a node A (where A is

any node on the propagation path, including the subscrib-
ing node) refines S based on the overlapping relation be-
tween the content space that A covers and the range of
S. If the range of S completely falls into the range of A,
A will fully accept subscription S; If there is no overlap-
ping between them, A will forward S after generating a re-
fined prefix key; If there is overlapping between them, A
will divided S into multiple sub-subscriptions and forward
the sub-subscriptions which are not covered by the current
node. Figure 2(b) gives an example of subscription splitting
on a 2-dimensional content space. SubscriptionS is divided
into two sub-subscriptions by horizontally partitioning rect-
angle 011 in half, and the prefix for the sub-subscriptions
are “0110” and “0111” respectively. Node A can com-
pletely cover Q1 and has no overlap with Q2, so it register
Q1 into its repository and forward Q2 to node B, which is
the next hop node of key 01110 . . .0 in nodeA’s routing ta-
ble. In figure 2(c), node B further refines sub-subscription
Q2 by cutting Q3 out of Q2, and the remainder of Q2 can
be completely covered by nodeB. NodeB then registerQ 2

in its repository and sends out sub-subscriptionQ3 with its
prefix “011111”.
The subscription refining and routing algorithm is essen-

tially a recursive process where subscriptions are progres-
sively refined and delivered on the embedded trees formed
by the DHT links. Thus the overall number of messages
needed to resolve and route a subscription can be signifi-
cantly reduced.
Each subscription in the network is identified by an iden-

tifier subid, which is composed of the subscriber’s node ID
nid and an internal ID iid which identifies different sub-
scriptions of the same node. Given a subscription s, our
infrastructure refines and delivers s to all the nodes whose
content space overlaps with the range of s. We call these
nodes the surrogate nodes of s. Subscription registration

records the subid and range of subscription s to the repos-
itories of s’s surrogate nodes.

3.4. Event publication and delivery

When an event is generated, the pub/sub system gets all
matched subscriptions and delivers the event to the corre-
sponding subscribers. As discussed in section 3.1, the event
can be described by a point in the content space. Given
an event e, the locality-preserving hash function is first in-
voked to identify them-level hypercuboid z which contains
the event point e. We call content zone cz the rendezvous
point of event e. The event e is then sent to the successor
node of key(z), call nodeN , for matching the subscriptions
stored on nodeN and delivering e to all of the matched sub-
scribers. Algorithm 2 outlines the procedure of event publi-
cation.
Algorithm 2 publish (Event e)
1: key← LPH(e)
2: N ← lookup(key) find the successor node of key
3: N.event match delivery(e)

Upon receiving an event e, node N matched e against
all of the subscriptions stored on node N , a matched list
of subids will be generated for event delivering, as shown
in algorithm 3. The message for event delivery contains an
event e and a corresponding subid list.
Algorithm 3 event match delivery (Event e)
1: subid list← match(e)
2: Messgem← {e, subid list}
3: event delivery(m)

Upon receiving an event message m, a node, called Q,
first extract the subid list fromm, then divides subid list
into several sub list by exploring nodeQ’s DHT links. All
subids with targeting nodes sharing a common DHT link
are put into the same list, according to Chord’s routing pro-
tocol. The message carrying each subid list is then deliv-
ered through the corresponding DHT link. This mechanism
can efficiently aggregate the event delivering messages and
reduce the network bandwidth usage. Algorithm 4 outlines
Algorithm 4 event delivery (Messagem)
1: e← extract event fromm
2: subid list← extract subid list fromm
3: for each sid ∈ subid list do
4: if sid.nodeID = currentnode′sID then
5: deliver e and sid.iid to local application
6: else
7: find neighbor nodeNj in the DHT links whose nodeID is equal

to or immediately precedes sid.nodeID
8: put sid inmatched list[j]
9: end if
10: end for
11: for each DHT link node Nj do
12: ifmatched list[j] is not empty then
13: Message m← {e, matched list[j]}
14: Nj .event delivery(m)
15: end if
16: end for
the procedure of event delivery which is essentially a dis-
tributed recursive process. Each node along the dissemi-
nation paths of the embedded tree processes and forwards

eventmessage until the event reaches all corresponding sub-
scribers.

4. Load balancing

An important issue in the distributed system is load bal-
ancing. Each node in the system needs to store subscrip-
tions and propagate events. Therefore, load on a node is due
to both subscriptions and events. The locality-preserving
hashing can not produce a uniform load distribution among
nodes. The skewed distribution of real world dataset can
cause a non-uniform distribution of load on the nodes. To
this end, we propose load balancing mechanisms to stati-
cally or dynamically adjust load among nodes and ensure
that no node is unduly loaded.

4.1. Space mapping rotation

Remember that our architecture can simultaneously sup-
port many pub/sub schemas. For each pub/sub schema, the
locality-preserving hashing mechanism partitions the con-
tent space and maps content zones to nodes in the iden-
tifier space ranged [0..βm − 1]. If each schema/subschema
S is given a random rotation offset φ, content zone cz of
schema S will be mapped to node successor(key(cz)+φ)
(all arithmetic is modulo βm). Thus content zones with
identical key for different schemas/subschemas will be
mapped to different nodes with a high probability. The
mapping rotation mechanism can effectively distribute the
large-size content zones for different schemas/subschemas
onto different nodes. The randomness of φ for each
schema/subschema can be achieved by hashing (with con-
sistent hash function, e.g. SHA1) the name of the corre-
sponding schema/subschema. The locality-preserving hash
function can be easily modified to reflect the mapping rota-
tion.

4.2. Content space transformation

The event load is not evenly distributed among the ren-
dezvous point nodes when events are not uniformly dis-
tributed in the content space. Hence nodes in the events
propagation path relative to hotspot rendezvous points may
be overloaded due to event delivering.
For many real applications, the data distribution func-

tions are monotonically increasing and can be modeled in
advance based on the analysis of the characteristics and the
historical data of the application. The original content space
can be transformed to an intermediate space with data dis-
tribution approximately uniform according to the premod-
eled data distribution functions. Given a d-attribute content
spaceΩ, where each attributeΩi is bounded by ⟨Ωi.L, Ωi.H⟩

and conforms to a certain distribution with Cumulative Den-
sity Function (CDF) Fi(x), the transform from Ω to Ω′ sat-
isfies the following two properties: (1) Ω′ has same dimen-
sionality and domain size as Ω; (2) each data point e in Ω is
mapped to a point e′ in Ω′ as follows:

e ∈ Ω
e0

. . .
ei

. . .
ed-1

⇒

e′ ∈ Ω′

F0(e0) × (Ω0.H − Ω0.L) + Ω0.L

. . .
Fi(ei) × (Ωi.H − Ωi.L) + Ωi.L

. . .
Fd-1(ed-1) × (Ωd-1.H − Ωd-1.L) + Ωd-1.L

The data space transformation leads to an approximately
uniform distribution of events on content space Ω ′ and
locality-preserving hashing on Ω ′ can produce a uniform
distribution of event among rendezvous points.

4.3. Dynamic subscriptions migration

Subscriptions may not be evenly distributed among sur-
rogate nodes. The overhead on heavily loaded nodes can
be very high due to the storage cost of subscriptions, the
CPU cycles for subscription management and event match-
ing, and bandwidth cost for event delivery (the matched
subid list can be very large). Here we propose a dynamic
mechanism to migrate some load from heavily loaded nodes
to lightly loaded ones.
At run time, each node periodically samples the load on

its neighbors (and neighbors’ neighbors if the probing level
Pl is greater than 1). A node, called N , is said to be heavily
loaded if its load oversteps the average load on the neigh-
bors by a threshold factor δN , that is, LN > L̄ × (1+δN).
The value of the threshold factor δ for each node is based
on the node’s capacity. The average values of δ and P l con-
trol the tradeoff between the overhead and the quality of
the load balancing. If node N is overloaded, it will choose
several lightly loaded neighbors (or neighbors’ neighbors)
and migrate some of its load to them. Without loss of
generality, assume N chooses k nodes (A1, A2, . . . , Ak)
for load migration, and nodes N, A1, A2, . . . , Ak lie in the
clockwise order on the Chord ring. Subscriptions with sub-
scribers’ nodeIDs lying in the range [ID(A i)..ID(Ai+1)) are
migrated to node Ai, where 1 ≤ i ≤ k-1. Subscriptions with
subscribers’ nodeIDs lying in the range [ID(Ak)..ID(N))
are moved to node Ak. Each node Ai summarizes the ac-
cepted subscriptions and registers a surrogate subscription
on node N .
The subscriptions migration mechanism can move some

load from heavily load nodes to lightly loaded nodes. Thus
the cost for storing, managing and matching subscriptions
on the heavily loaded nodes can be significantly decreased.
Moreover, subscriptions are migrated to nodes that are close
(in the overlay) to the corresponding subscribers, therefore
the average message size for event delivery can be reduced

Table 1. Pub/sub scheme and properities
Dim Size(byte) Min Max Data skew factor Data hotspot Size skew factor Size hotpot
0 2 0 10000 0.2 9500 0.8 2%
1 2 -10000 10000 0.3 0 0.6 5%
2 4 0 30000 0.4 100 0.5 10%
3 2 0 10000 0.1 5000 0.4 30%

due to the decrease of average length of matched subid list
in event messages.

5. Performance evaluation

In this section, we evaluate performance of the proposed
design through simulations. We start our discussion by de-
scribing the experimental setup and metrics used for eval-
uation. Afterwards, the experimental results are presented
and discussed.

5.1. Experimental setup

We implement our pub/sub architecture on top of
p2psim[7], a discrete event-driven, packet level simula-
tor for many DHT protocols. We use Chord-PNS (Chord
with proximity neighbor selection [8] allows each node to
choose physical closest nodes from the valid candidates as
routing entries, thus to reduce the lookup latency.) pro-
tocol with its default parameters. The number of bits in
the key/node identifiers in the simulator is 64. The net-
work model used in the simulation is derived from the King
dateset, which includes the pairwise latencies of 1740 DNS
servers in the Internet measured by King method [10]. The
average round-trip time of the simulated 1740-node net-
work is 180 milliseconds.
We use synthetic datasets in our simulations. Events are

generated based on Zipfian distribution, which is a common
distribution of real world datasets. The cumulative distribu-
tion function for Zipfian distribution is Hk,s/HN,s, where
HN,s is the N th generalized harmonic number with skew
factor s and 1 ≤ k ≤ N . Data points are modeled by scaling
and shifting the domain of k. Subscriptions are generated
from a template with the following properties: (1) the size
of the range on each dimension is based on zipfian distribu-
tion; (2) the center of the range is based on the data distri-
bution (same distribution as event points). The parameters
and the default values of publish/subscribe model are list in
table 1. The simulation starts by issuing 10 subscriptions
on each node in the network. After system stabilization,
we schedule 20, 000 events generated on randomly chosen
nodes. The interarrival time of these events is exponentially
distributed with average value of 1000milliseconds.
A set of cost metrics are used to evaluate the performance

of the proposed architecture: (1) hops: the maximum path
length required to deliver a subscription to all of the cor-
responding surrogate nodes and the maximum path length

to deliver an event to all of the corresponding subscribers;
(2) laterncy: the maximum time of delivering a subscrip-
tion to its surrogate nodes and delivering an event to all
of the corresponding subscribers; (3) bandwidth cost: to-
tal bandwidth consumption per subscription and the total
bandwidth consumption for delivering an event to all of the
corresponding subscribers. The size of each subscription
message is modeled in byte as: 20 + 2 ∗ i width + 9 + 1,
where 20 bytes are for package header, i width is the sum
of the attributes’ size, 8 bytes are for prefix key, 1byte is for
prefix length. The size of each event message is modeled
in bytes as: 20 bytes for packet header, i width bytes for
event, and 9 bytes for each SubID (8 bytes for subscriber’s
nodeID, and 1 byte for internalID) carried in the mes-
sage.

5.2. Experimental result

We first evaluate the performance of subscription instal-
lation algorithm with respect to different range selectivity
in the 1740-node network. We change the range selectiv-
ity on each dimension from 0.1% to 50%. As illustrated in
figure 3, the overlay hops, latency and bandwidth cost in-
crease when range selectivity increases. The overlay hops
and latency increase slightly. Even the range selectivity in-
creases to 50%, the overlay hops is still less than 10, and the
maximum latency is less than 2100ms. The bandwidth cost
has a reasonable increase when range selectivity becomes
large because subscriptions with large range need to be de-
livered and stored to more surrogate nodes. (For 50% range
selectivity, it only takes about 1.48Kbytes for delivering a
subscription to large fraction of nodes in the 1740-node net-
work.)
We evaluate the performance of event delivery algorithm

in the 1740-node network. Figure 4(a) illustrates the distri-
bution of events with respect to the percentage of matched
subscriptions to all subscriptions in the system (the average
value is 1.834%). Figure 4 (b) (c) and (d) depict the dis-
tribution of events with respect to hops, latency, and band-
width cost respectively. The shape of curves in figure 4 (b)
(c) and (d) close match the curve in figure 4(a). The average
value of hops, latency, and bandwidth cost are 18, 1509ms,
and 34.5Kbyte respectively (without load balance). Load
balancingmechanism (we only evaluate Dynamic Subscrip-
tion Migration mechanism in this paper) can effectively
move some subscriptions from overloaded nodes the light-
loaded ones, with slightly increasing the hops, latency and

0.1 0.5 1 5 10 20 30 40 50
0

3

6

9

12

15

Range selectivity (%)

M
ax

 o
ve

rla
y

ho
ps

 (p
er

 s
ub

)

(a)

0.1 0.5 1 5 10 20 30 40 50
0

500

1000

1500

2000

2500

3000

Range selectivity (%)

M
ax

 L
at

en
cy

 (m
s)

 (p
er

 s
ub

)

(b)

0.1 0.5 1 5 10 20 30 40 50
0

0.5

1

1.5

2
x 104

Range selectivity (%)

Ba
nd

w
id

th
 c

os
t (

by
te

) (
pe

r s
ub

) (c)

Figure 3. Performance of subscription installation algorithms with respect to range selectivity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Percentage of matched subscribers (%)

C
D

F
of

 e
ve

nt
s

(a)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

Max hops

C
D

F
of

 e
ve

nt
s

(b)

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Max latency (ms)

C
D

F
of

 e
ve

nt
s

(c)

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Bandwidth cost per event (Kbyte)

C
D

F
of

 e
ve

nt
s

(d)

Avg (1.834%)

No LB Avg (18)
LB AVg (25)

No LB Avg (1509ms)
LB Avg (1720ms)

No LB Avg (34.5Kb)
LB Avg(36.8Kb)

Figure 4. Distribution of events with respect to hops,
maximum latency and bandwidth cost.

bandwidth cost, as shown in figure 4. It should be noted
that the dynamic load balancing mechanism does not guar-
antee an absolute uniform distribution of load among nodes
in the system (considering the overhead of subscriptions mi-
gration). However, it ensures that no node in the system is
unduly used. As depicted in figure 5, the maximum load on
load is 8201 before applying the load balancingmechanism,
and the maximum load on node is 4000when dynamic load
migrationmechanism applied. Although the load on node is

20 40 60 80 100
0

2000

4000

6000

8000

10000

Nodes ranked by load

Lo
ad

 o
n

no
de

 (#
 o

f s
ur

ro
ga

te
 s

ub
sc

rip
tio

ns

No load balance
Load balance

Figure 5. Load distribution on nodes (Nodes are ranked
by load, and only first 100 nodes are depicted)

measured as the number of subscriptions stored on the node,
the proposed load balancing mechanism can efficiently bal-

ance other load such as communication cost and CPU cycles
etc. In this paper, we assume all nodes have same capacity
(same threshold factors). We will evaluate the performance
and cost for load balancing in heterogeneous environment
with various parameters in the future.

Table 2. Simualted Networks and Average RTTs
Size (×103) 2 4 6 8 10 12 14 16
Ave RTT (ms) 174 176 182 182 180 180 178 178

2 4 6 8 10 12 14 16
0

1

2

3

Network size (103)Pe
rc

en
ta

ge
 o

f m
at

ch
ed

 s
ub

s
(%

)

(a)

2 4 6 8 10 12 14 16
0

20

40

60

Network size (103)

M
ax

 h
op

s

(b)

2 4 6 8 10 12 14 16
0

1000

2000

3000

4000

Network size (103)

M
ax

 la
te

nc
y

(m
s)

(c)

2 4 6 8 10 12 14 16
0

50

100

150

200

Network size (103)Ba
nd

w
id

th
 c

os
t p

er
 e

ve
nt

 (K
by

te
)

(d)

Avg (1.834%) Without LB
With LB

Without LB
With LB

Without LB
With LB

Figure 6. Performance with respect to different network
size.

We evaluate the performance in various sized networks
(as listed in table 2) derived from king data. Since each node
in the system generate 10 subscriptions, total number of
subscription increases with the increasing of network size.
It is hard to keep the average percentage of matched sub-
scriptions unchanged for different network size. Figure 6(a)
depicts the average percentage of matched subscriptions in
each network. Although the average percentage of matched
subscriptions decreases slightly with the increasing of net-
work size, the average number of matched subscriptions per
event increase largely when the number of nodes in the sys-
tem increases. As shown in figure 6 (b), (c), and (d), the
maximum hops, latency, and network bandwidth cost in-
curred by event delivery increase modestly as the number
of nodes in the system increases from 2000 to 16000. This
shows that proposed architecture can scale to large number

of subscribers and large-size networks.

6. Conclusion and future work

In this paper we have proposed and evaluated the de-
sign of a scalable and decentralized infrastructure, which
is built on top of distributed hash table for content-based
publish/subscribe services. A locality-preserving hashing
mechanism is developed to recursively subdivide the con-
tent space into layered content zones. Subscriptions and
events are mapped to content zones for efficient matching.
It does not need to maintain any dissemination trees for
each pub/sub schema. Instead, it exploits the embedded
trees in the underlying DHT for event delivery. Therefore
the proposed architecture can simultaneously support many
pub/sub schemas without the overhead of the maintenance
of additional in-network data structures. We have also pro-
posed light-weighted load-balancing mechanisms to adjust
the load among nodes and ensure that no node in the system
is unduly loaded.
This paper constitutes an initial step to build an effi-

cient and scalable platform for supporting publish/subscribe
services in peer-to-peer networks. There is much of fu-
ture work to do. One is to enable the execution of real-
world workloads and make the data distribution dynami-
cally changed. Detailed evaluations will be performed on
the subscription installation, event delivering and load bal-
ancing mechanisms, based on which more optimizations
may be proposed. Currently, our design leverages the un-
derlying DHT to deal with nodes join/departure/failure.
However, the performance under high node churn rate has
not been explored. This will be one of our future work.

References

[1] I. Aekaterinidis and P. Triantafillou. Pastrystrings: A com-
prehensive content-based publish/subscribe DHT network.
In Proceedings of the 26th ICDCS, Lisboa, Portugal, Jul
2006.

[2] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E.
Strom, and D. C. Sturman. An efficient multicast protocol
for content-based publish-subscribe systems. In Proceed-
ings of the 19th IEEE ICDCS, pages 262–272, 1999.

[3] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Commun. ACM, 18(9):509–517,
1975.

[4] K. P. Birman. The process group approach to reliable
distributed computing. Communications of the ACM,
36(12):36–53, Dec. 1993.

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems, 19(3):332–383, 2001.

[6] Y. Choi, K. Park, and D. Park. Homed: A peer-to-
peer overlay architecture for large-scale content-based pub-
lish/subscribe systems. In Proceedings of the third In-
ternational Workshop on Distributed Event-Based Systems
(DEBS), pages 20–25, Edinburgh, Scotland, UK, May 2004.

[7] Computer Science and Artificial Intelligence Lab,
MIT. p2psim: a simulator for peer-to-peer protocols.
http://pdos.csail.mit.edu/p2psim.

[8] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and
R. Morris. Designing a DHT for low latency and high
throughput. In Proceeding of the First Symposium on Net-
worked Systems Design and Implementation (NSDI), pages
85–98, San Francisco, CA, Mar. 2004.

[9] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross,
and D. Shasha. Filtering algorithms and implementation
for very fast publish/subscribe systems. In Proceedings of
the 2001 ACM SIGMOD, volume 30, pages 115–126, Santa
Barbara,CA, 2001.

[10] K. P. Gummadi, S. Saroiu, and S. D. Gribble. King: Es-
timating latency between arbitrary internet end hosts. In
Proceedings of the 2002 SIGCOMM Internet Measurement
Workshop, Marseille, France, Nov. 2002.

[11] A. Gupta, O. D. Sahin, D. Agrawal, and A. E. Abbadi.
Meghdoot: Content-based publish/subscribe over p2p net-
works. In ACM/IFIP/USENIX 5th International Middleware
Conference, Toronto, Ontario, Canada, Oct. 2004.

[12] B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The informa-
tion bus: an architecture for extensible distributed systems.
In Proceedings of the fourteenth ACM SOSP, pages 58–68,
Asheville, NC, Dec. 1993.

[13] G. Perng, C. Wang, and M. K. Reiter. Providing content-
based services in a peer-to-peer environment. In Proceed-
ings of the third International Workshop on Distributed
Event-Based Systems (DEBS), pages 74–79, Edinburgh,
Scotland, UK, May 2004.

[14] P. R. Pietzuch and J. Bacon. Peer-to-peer overlay broker net-
works in an event-based middleware. In Proceedings of the
Second International Workshop on Distributed Event-Based
Systems (DEBS), San Diego, CA, June 2003.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and Shenker.
A scalable content-addressable network. In Proceedings of
ACM SIGCOMM, pages 161–172, San Diego, CA, Aug.
2001.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, decentral-
ized object location, and routing for large-scale peer-to-peer
systems. In Proceedings of the 18th IFIP/ACM International
Conference on Distributed System Platforms (Middleware),
pages 329–350, Heidelberg, Germany, Nov. 2001.

[17] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, and P. Dr-
uschel. SCRIBE: The design of a large-scale event notifica-
tion infrastructure. In Proceedings of the 3rd International
Networked Group Communication, pages 30–43, 2001.

[18] I. Stoica, R.Morris, D. Karger, M. Kaashoek, and H. Balakr-
ishnan. Chord: A scalable peer-to-peer lookup service for
internet applications. In Proceedings of ACM SIGCOMM,
pages 149–160, San Diego, CA, Aug. 2001.

[19] D. Tam, R. Azimi, and H.-A. Jacobsen. Building content-
based publish/subscribe systems with distributed hash ta-
bles. In Proceedings of the International Workshop on
Databases, Information Systems and Peer-to-Peer Comput-
ing, Berlin,Germany, Sept. 2003.

[20] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P.
Buchmann. A peer-to-peer approach to content-based pub-
lish/subscribe. In Proceedings of the Second International
Workshop on Distributed Event-Based Systems (DEBS), San
Diego, CA, June 2003.

[21] P. Triantafillou and I. Aekaterinidis. Content-based publish-
subscribe over structured P2P networks. In Proceedings
of the third International Workshop on Distributed Event-
Based Systems (DEBS), Edinburgh, Scotland, UK, May
2004.

[22] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An infrastructure for fault-tolerance wide-area location and
routing. Technical Report UCB/CSD-01-1141, Computer
Science Division, U.C. Berkeley, Apr. 2001.

[23] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and
J. Kubiatowicz. Bayeux: An architecture for scalable and
fault-tolerant wide-area data dissemination. In Proceedings
of the Eleventh International Workshop on Network and Op-
erating System Support for Digital Audio and Video (NOSS-
DAV), June 2001.

